~

30t June 2013

rF /

-
,

Garada

SAR Formation Flying

Annex 12. Basis of an Australian
Radar Soil Moisture Algorithm
Theoretical Baseline Document

Document Version: VO1_00

User Advisory Group (UAG)

Prof ].P. Walker, Monash University

Dr R. Panciera, University of Melbourne
Dr A. Monerris, Monash University

Revision History

Version No. Date Author Description of Change

V01_00 30" June 2013 UAG Initial Release




REPORT BACKGROUND AND SUMMARY

The purpose of the Garada User Advisory Group’s (UAG) study into the soil moisture application was
to determine a theoretical baseline of requirements for any future Australian sensor. This short
summary introduces the report “Basis of an Australian Radar Soil Moisture Algorithm Theoretical
Baseline Document” where the issues are thoroughly investigated. In what follows, references to a
specific, numbered paragraph of the above mentioned report are specified with the number of the
paragraph in parentheses.

Timely knowledge of soil moisture content on a national level has important social, economic and
environmental consequences, especially in the Murray Darling Basin area of Australia. Such coverage
within short periods of time is only possible through a dedicated spaceborne mission and Synthetic
Aperture Radar (SAR) is the best candidate sensor. This is because it is an active sensor and
measurements can be made in all weather conditions and at any time of day. Also, the spatial
resolution is better than for passive radiometer sensors (at the expense of worse radiometric
accuracy) (1.1.3).

It is shown in the report that the best SAR mission for soil moisture is a fully polarimetric P, L or S
band SAR sensor while the minimum requirement is for a dual polarised (HH and VV) or compact
polarimetric L-band system (transmit circular, receive linear). The Garada mission therefore qualifies
as among the most able of current or planned SAR missions for soil moisture extraction.

A sensor with carrier frequency between 1 and 5 GHz (into which L band falls) has the maximum
sensitivity to soil moisture (1.3.3). Relatively long microwave wavelengths are preferred since lightly
vegetated areas can be considered as bare soil for the purposes of extracting soil moisture.
Moreover, L-band is a protected band, meaning interference will be minimal (1.3.5). In fact, the
Garada SAR instrument is designed to work within a designated International Telecommunication
Union frequency band, for minimal interference.

In terms of the orbit requirements, the best mission for soil moisture has a dawn-dusk sun-
synchronous orbit. A dawn-dusk sun-synchronous orbit is such that the satellite will image a certain
area of the earth at the same local time. Typically the ascending pass (moving from southern to
northern latitudes) will be at dawn (6 am) and the descending pass (moving oppositely) will be at
dusk (6 pm). The orbit is such that the solar panels on the satellite will have continuous illumination
from the sun, meaning more power will be generated so a greater number of acquisitions can be
taken. The 6 am overpass minimises the atmospheric effects of the ionosphere on the polarisation of
the electromagnetic radiation and thus is optimal for soil moisture extraction (2.3.8).

The orbit selection also affects the revisit time. This is the minimum period of time such that the
ground track of the satellite repeats. A relatively short revisit time is preferred for continuous soil
moisture monitoring and a requirement on the resolution of 50 metres is derived. This is both to
differentiate the capabilities of an Australian spaceborne SAR from the forthcoming SAR missions of
other countries, but more importantly, to address the specific needs of Australian users who would
depend on a soil moisture product. The forthcoming spaceborne soil moisture missions considered
include SAOCOM, ALOS 2 and SMAP and their soil moisture solutions are discussed in detail.

The spatial resolution requirements will vary according to the application. The applications
considered include climate modelling, weather forecasting, flood forecasting, broad-acre farming
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and irrigation management. The most stringent requirement is for a 50 metre spatial Garada

resolution for irrigation management (1.4.1). This becomes the driver for all subsequent
requirements. A 50m spatial resolution will also likely be beneficial in environmental protection
applications, where for example it can discriminate moisture levels as a function of distance from a
river.

The report considers the various soil moisture extraction algorithms in order to determine a
baseline. There are two broad classes of soil moisture algorithms, the snap-shot based ones and the
time-series based ones (3.1.1). Within these categories, there are further divisions, empirical, semi-
empirical and theoretical among them. Each may have analytical, ie. closed form or numerical
solutions. (3.1.2). The snap-shot based algorithms require only a single image.

A time series approach to soil moisture extraction is recommended. This means that multiple images
at different times are used to determine the changes in soil moisture levels of the scene (4.1.1).
Using images of the same scene from different times allows the phase changes to be measured. The
working assumption is that the parts of the image that show changes are related to soil moisture
content, while the relatively static parts of the image relate to soil texture and roughness, as well as
to topography (4.1.1). Thus, measuring the decorrelation between two images allows the soil
moisture content to be determined.

Soil moisture is expected to effect polarisation because it changes the conductivity of the soil. The
time series approach can be combined with full polarimetric operation in order to extract
information about the dominant scattering mechanisms. Polarimetric operation of the SAR refers to
using information about the polarisation of the electromagnetic returns additionally to the phase
and amplitude of the received echo. The polarisation information can be exploited to give
information about the dominant scattering mechanisms of a scene.

Important to the soil moisture application is the need for good radiometric calibration. Calibrating
the SAR sensor is needed in order to extract an absolute volumetric soil content from the data (or
better yet, the dielectric constant that is related to the soil moisture content). Calibration can be
done either using passive corner reflectors (which are ground based and reflect the incoming signal
strongly) or active transponders. A study of calibration demands, especially relating to multiple
spaceborne sensors (ie. relative calibration) is described (7.2.4).

An analysis of the error budget pertaining to soil moisture retrieval is given. The following are
considered: SAR instrument noise, calibration error, physics model error, ancillary data error,
conversion error from dielectric constant to volumetric soil moisture, effect of scaling and scene
heterogeneity.

Finally the algorithms for extracting soil moisture from SAR data are investigated. Recommendations
are given on the best algorithms and the validation procedures. The latter include airborne and field
studies to be conducted prior to deployment of the SAR mission. Quality control in the form of post
launch validation of the algorithms and their accuracy is recommended. This will involve in-situ soil
moisture measurements using probes.

In conclusion, the following report is a comprehensive study of state of the art methods relating to
soil moisture extraction from radar data and its recommendations are highly relevant to a future
Australian soil moisture SAR mission, such as studied in the Garada program.
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PREFACE

This report constitutes the basis for an Algorithm Theoretical Baseline Document (ATBD) of a radar-
based soil moisture mission for Australia.

This document draws heavily upon material provided in the report

M.L. Williams, A. Mitchell and A.K. Milne (2013) Soil moisture retrieval using satellite
synthetic aperture radar (SAR): Review of relevant soil moisture retrieval algorithms and
recommendations for a SAR soil moisture sensor and algorithm, 105pp.

prepared by Horizon Geoscience Consulting (HGC) for Prof. Walker. The original report is available
upon request. HGC staff have been working in close collaboration with Prof Walker and Dr Panciera
as part of a User Advisory Group (UAG) for soil moisture estimation from radar during the
preparation of their report. While this report does not necessarily reflect the views of HGC, the
outcome of this collaboration has culminated in the present document. Some material has also
been sourced from the report

Tanase, M. and Panciera, R. (2011) Towards operational monitoring of key climate
parameters from synthetic aperture radar. Research Plan. Cooperative Research Center for
Spatial Information (CRC-SI) / The University of Melbourne.
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EXECUTIVE SUMMARY

V01_00

The preferred radar mission design for soil moisture mapping would be a fully polarimetric
S-, L-, P-band system so as to cover the full range of conditions ranging from bare to
forested, while the minimum mission would be a dual polarized (HH and VV) or compact
polarimetric (providing the current knowledge gaps on compact polarimetry techniques
can be filled) L-band system.

Important factors to consider in the design are RFI mitigation and Faraday
rotation/ionospheric correction. A 6AM overpass time would be expected to minimize the
Faraday and ionospheric effects.

An exact orbit repeat with 2-3 day revisit is needed to meet the requirements of most soil
moisture applications and retrieval algorithms. A constellation of satellites will be required
to achieve this, and thus inter-sensor calibration will be critical for the time-series based
retrieval algorithms that are proposed. Use of Gallium Nitride (GaN) technology and SCan
On REceive (SCORE) operation with digital beam forming will help limit the number of
satellites required to achieve this temporal repeat requirement.

Presuming the minimum mission with a 2-3day exact orbit repeat is adopted, a 50m spatial
resolution of the derived soil moisture product would be required to set an Australian
radar soil moisture mission apart from the capabilities of other existing and/or near-term
missions, such as Sentinel, SAOCOM and TanDEM-L. Moreover, the 50m resolution would
be required to address issues in relation to irrigation scheduling. If this resolution and/or
temporal repeat are not achievable, then the possibility of partnering with one of the
proposed missions should be explored.

A time-series soil moisture retrieval algorithm is recommended, making use of frequent
radar observations to distinguish backscatter changes due to soil moisture dynamics from
those due to changes in surface roughness and vegetation, together with decomposition of
fully-polarimetric observations to determine dominant scattering mechanisms within each
cell.

Attention to the retrieval algorithms, related ancillary information and calibration
methodologies will be required before committing to a final system design, particularly if
compact polarimetric mode is to be adopted. This would require dedicated pre-launch
airborne field campaigns that closely mimic the specifications of the proposed mission
design. Careful attention to post-launch algorithm validation and final algorithm selection
should also be included as a fundamental component of any radar soil moisture mission for
Australia.
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1. INTRODUCTION
1.1. Overview

1.1.1. Knowledge of the spatial and temporal distribution of soil moisture is critical for economic,
social and environmental planning in a water-constrained future. Such information can only
be provided on a national basis using remote sensing.

1.1.2. While most applications require absolute soil moisture content on a near-daily repeat, the
spatial resolution requirements are highly dependent on the application.

1.1.3. Microwave remote sensing is the only approach to have all-weather observing capabilities,
and to have a response that is directly affected by the water content in the near-surface
layer of soil. Moreover, radar (active microwave) is required to achieve spatial resolutions
that are better than the 10’s km spatial resolution provided by radiometer (passive
microwave) sensors.

1.1.4. In this report, soil moisture will be understood as the water content in the top 5cm soil
surface layer, measured in terms of volumetric units [vol/vol]. While soil water content is
often referred to in terms of “relative wetness”, it is only an “absolute soil moisture content”
that can be directly measured and traced against calibration standards using volumetric field
measurements.

1.1.5. The absolute soil moisture value typically has a dynamic range from close to zero, to as
much as 0.5 vol/vol in sandy soils; clay soils have a lower dynamic range.

1.2. Importance of Soil Moisture

1.2.1. About 70% of the Earth is covered with water, 97% of which is oceans. Heating of oceans by
the Sun keeps the Earth's water in a continuous circulation from the atmosphere to the
Earth and back again through condensation, evapotranspiration, and precipitation
processes. Some of the precipitation that falls onto the land infiltrates into the ground.

1.2.2. The water in the unsaturated or “vadose zone” of the land surface is usually referred to as
soil moisture. The thickness of this zone extends from the soil surface to as much as a few
hundred metres below the surface in some regions, depending on soil thickness and
groundwater table depth.

1.2.3. Although the water held by soils is a small fraction of the Earth's water budget, soil moisture
plays an important role in the water cycle since it controls the proportion of rainfall that
percolates, runs off, or evaporates from the land, thus influencing plant growth and flood
magnitudes. Moreover, it affects the evapotranspiration that then impacts the precipitation
variability within a region (Koster et al., 2004).

1.2.4. Importantly, the near-surface layer of soil moisture that can be observed by satellites i) is
what has the greatest impact on flood events, and ii) can be combined with model
predictions to estimate root zone soil moisture requirements for agricultural and
meteorological applications.
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1.3. Soil Moisture Measurement Approaches

1.3.1.

1.3.2.

1.3.3.

1.3.4.

1.3.5.

1.3.6.

1.3.7.

1.3.8.

V01_00

In-situ measurements of soil moisture are sparse and their values are only representative of
small areas, since soil moisture temporal and spatial variation is large. Such soil moisture
networks are also expensive to install and maintain. However, several data bases exist, such
as the Global Soil Moisture Data Bank (Robock et al., 2000) and the International Soil
Moisture Network (Dorrigo et al., 2011), based on a networks ranging from small research
watershed to national coverage. Unlike the United States, Australia has no national soil
moisture observing network.

Many model based soil moisture products exist, such as the Australian Water Availability
Project (http://www.eoc.csiro.au/awap), but these typically provide information only on
wetness in the climatology of the model, meaning that values are not easily used in
applications. Moreover, they are typically un-validated.

The alternative to these approaches is remote sensing, with the capability to provide an
absolute soil moisture value over large areas on a regular repeat cycle. However, the
sensitivity to soil moisture content is highly dependent on the operating frequency of the
remote sensing system. The maximum sensitivity to soil moisture is achieved in the lower
range of microwave frequencies (Ulaby et al., 1986), which goes from 1 to 5 GHz
(wavelength from 30 cm to 5 cm, respectively).

Land surfaces are a mixture of soil, water, and air particles. At microwave frequencies the
real part of dry soil and water dielectric constants are approximately 4 and 80, respectively
(Jackson & Schmugge, 1989). Thus soil moisture can be estimated from this contrast
between the dielectric constant of water and soil particles.

Many works in the scientific literature conclude that microwave radiometry at L-band (1.4-
1.427 GHz) is optimal to estimate soil moisture, not only because it is very sensitive to soil
moisture, but also because i) it provides all-weather coverage, since the atmosphere at
microwave frequencies may be considered nearly transparent, ii) vegetation is semi-
transparent, which allows observations of the underlying layers, and iii) it is a protected
band (Eagleman & Lin, 1976; Wang & Choudhury, 1981; Jackson & Schmugge, 1991, 1995;
Kerr et al., 2000).

Radiometry (passive) and radar (active) microwave remote sensing differ primarily in the
source of electromagnetic energy used. Passive sensors record the emission from the
ground at microwave frequencies. Active microwave sensors, including Synthetic Aperture
Radar (SAR), transmit and receive pulses of microwave energy, and record the time delay
(distance) and intensity (backscatter) of the echoed signal.

Radiometers employ very large antennas to measure the typically weak signal from thermal
emission. Technical limitations on the antenna size yield a large beam width and thus poor
spatial resolution (Lillesand and Kiefer, 1994). Despite their poor spatial resolution, they are
less affected by vegetation and surface roughness than radars, making them the preferred
option for dedicated soil moisture missions to date.

Active sensors can resolve objects at much finer spatial resolutions than passive systems, but
the data are much more difficult to interpret due to their high sensitivity to surface
roughness, topography and vegetation effects.
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The intended application of the data will determine the most suitable system. The utility of
active microwave sensors (Ulaby et al, 1976, 1978, 1996; Wang et al. 1986; Rombach, 1997)
and radiometers (Jackson, 1993; Wigneron, 1998; Du et al., 2000) for soil moisture content
retrieval has been successfully demonstrated in many studies. Real-aperture radar spatial
resolution is determined by the pulse length and antenna beam width, both a function of
antenna length. By increasing the length of the antenna, finer spatial resolution is achieved.
The technical limitations imposed on antenna length to achieve the desired resolution are
circumvented by coherent processing of a large number of return signals along the flight
direction, simulating a large antenna, or synthetic aperture, in a method first propose by Carl
Wiley in 1951, and first implemented as a Synthetic Aperture Radar (SAR) by the University
of Michigan in 1953 (Barbier, 1996).

Although arguments can be made for more accurate passive microwave retrieval (Moran et
al., 2006), the requirements for spatial resolution and coverage for applications requiring
reliable soil moisture data can sometimes only be met using active sensors. It is noted that
NASA’s Soil Moisture Active Passive (SMAP) mission plans to use a combination of low
resolution passive microwave radiometry and higher resolution active SAR to measure soil
moisture at moderate (10km) resolution.

While passive microwave soil moisture missions have a 0.04 vol/vol accuracy target, radar
products struggle to achieve a 0.06 vol/vol accuracy.

1.4. Soil Moisture Applications and their Requirements

1.4.1.

V01_00

Soil moisture must necessarily be obtained at high accuracy for use in hydrologic and
meteorological models (0.04 vol/vol; Wigneron et al, 2000). The soil moisture user
community has differing needs in terms of spatial resolution, but almost all require a 2-3day
temporal repeat (Kerr et al., 2001). Missions referred to below are described in Section 2.
The spatial resolution requirements are as follows:

1. Climate modelling. Most climate models are run with a spatial resolution of 50km or
larger with global coverage. Several existing missions are already providing data including
SMOS (40km), ASCAT (50km), AMSR (50km) and SMAP (40, 10, 3km).

2. Weather forecasting. Weather forecast models are now being run at relatively high
spatial resolution when compared with climate modelling, typically on order of 10km.
However, the global coverage requirement is relaxed for this application; such models are
typically run for the entire Australian continent and/or over regions encompassing each of
the Australian capital cities. Several existing missions are and/or will be able to provide this
data globally including SMAP (3 and 10km) and ASAR (1km).

3. Flood forecasting. Flood forecast models are run on catchment scale, typically on order of
a few thousand square kilometres. Consequently they have a spatial resolution requirement
on order of 1-10km. Several missions will be able to provide this resolution or better
globally within the next few years, including SMAP (3km) and ASAR (1km). Others are likely

8
Annex 12. Basis Of An Australian Radar Soil 30th June 2013
Moisture Algorithm Theoretical Baseline Document



% MONASH University & |

Basis of an ATBD for a radar soil moisture mission

to be able to provide this data regionally if appropriate negotiations are undertaken, such as
SAOCOM (250m) and possibly TanDEM-L (250m).

4. Broad-acre farming. Soil moisture information for farm management, in terms of what to
plant and when, is done on the paddock scale, typically on order of 1km for crops like wheat,
canola and corn etc. Several missions will be able to meet this requirement including ASAR
(1km), SAOCOM (250m??) and possibly Tandem-L (250??m). There are also downscaled
products emerging from SMOS and AMSR, by combining the passive microwave products
with thermal images. Examples include DisPATCH from SMOS, with a 1km or better
resolution (Merlin et al., 2012).

5. Irrigation management. Most irrigation in Australia is done using centre-pivot (on order of
50-100m radius), travel irrigators (on order 50m wide) or using flood irrigation bays (typically
not more than about 50m wide and several hundred meters long). To be useful for irrigation
scheduling, there is a requirement that the resolution be significantly smaller than the size of
these management units, on order of 10m. At the very least a 50m resolution would be
required. There are no satellite missions currently able to meet the radar radiometric
accuracy required for soil moisture monitoring at 50m resolution. The closest would be
thermal derived indices which are limited to clear sky conditions and can be complicated to
interpret.

6. Other: There are multiple other incidental uses and users to those identified above. Some
of these include vector borne diseases, flood plain management, and bushfire risk, but each
of fall into one of the main spatial resolution requirements identified above. There is little
justification for spatial resolutions that fall between the 10-50m and 1km scales identified
above.

1.5. Basis of Soil Moisture Measurement Using Radar

Overview

1.5.1. Radar backscatter from natural terrain is determined by direct and direct-reflected surface
and volume scattering by both soil and vegetation (see Figure 1.1). The magnitude of the
various backscatter contributions is highly dependent on soil roughness, vegetation
structure and both soil and vegetation dielectric properties (i.e., water content).

1.5.2. The electric field scattered by a rough surface, such as that between moist soil and air, can
be described in terms of the surface fields (at the soil/air interface). The surface fields are
determined by the surface shape, the incident field strength, the direction and polarization
of the incident field, and the dielectric constant of the material. Radar backscatter
measurements are measurements of the strengths of scattered electric fields. Thus radar
backscatter from rough soil surfaces depends on these same factors.

1.5.3. The potential of microwave remote sensing for the measurement of soil moisture is based
on the large contrast between the dielectric properties of liquid water and those of dry soil.

9
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Figure 1.1. Three scattering mechanism (from SMAP ATBD L2/3_SM_A Data Products).

Soil moisture may therefore be estimated using active microwave remote sensing by
measuring radar backscatter signals from soil surfaces, inverting these signals to yield
estimates of dielectric constant, and converting these into estimates of soil moisture.

Surface properties including roughness and vegetation cover complicate the retrieval of soil
moisture and must necessarily be compensated. Roughness can affect backscatter as much
as, or more than, soil moisture (Altese et al., 1996, Wutherich, 1997) and there are no
simple or straightforward correction methods (Jackson et al., 1996).

Dielectric Constant

1.5.6.

1.5.7.

1.5.8.

V01_00

The relative dielectric constant is the dielectric constant value relative to that of free space,
and is a measure of a material’s ability to sustain an electric polarisation. When a dielectric
material is placed between the plates of a capacitor, the static electric field strength is
decreased and the dielectric constant gives the magnitude of the electric field relative to the
value it would have in the absence of any medium (Frélich, 1949). The relationship is usually
described in terms of the electric displacement, D, the electric field E and the polarization, P:

D=c¢E=E+4nP (Eq.1)

For a periodic electric field the dielectric constant is a complex quantity which gives both the
reduction in magnitude and the phase of the electric field relative to the field in the absence
of the dielectric.

Water (e.g. free moisture in a soil) is a polar liquid and therefore a dielectric material. Water
molecules carry an electrical polarisation, and may undergo rotations and be further
polarised in the presence of electric fields at microwave frequencies. The complex dielectric
constant of a dielectric material such as water is given by the Fourier-Laplace transform of
the response of the polarization of water to the electric field (Frdlich, 1949). The polarization
response function can be modelled so as to describe both the contribution to dielectric
polarization from electronic polarizability, and the contributions from molecular
reorientations in polar fluids such as water (Powles et al., 1987;1988).

10
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The imaginary part of the complex dielectric constant is proportional to the energy loss in
dielectrics. The real and imaginary parts vary with frequency and are not entirely
independent if the relationship between the displacement and the electric field strength is
linear (Frolich, 1949).

Soil, being a mixture of soil particles, air and both bound and free water (Ulaby, Moore and
Fung, 1986a) is a dielectric material that displays a strong dependence of dielectric constant
on volumetric soil moisture (m,).

Dry soil, irrespective of frequency, exhibits a real part of the dielectric constant €' between 2
and 5, and an imaginary part €" < 0.05 (Dobson and Ulaby, 1986). For water at 1 GHz €' is
around 80 and £" around 4 (Ulaby et al., 1986). As the water fraction increases in the soil, so
does the amount of free water that is able to move freely around the soil particles, and
consequently the soil dielectric constant increases (Topp, 1992). As a result of adding water
to dry soil, the value of €' can increase to 20 or greater (Schmugge, 1983). This difference
can be exploited in microwave imaging to estimate m,.
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Figure 1.2 Illustration of the response of the real (¢') and imaginary (€") parts of the dielectric response to

1.5.12.

1.5.13.

V01_00

volumetric soil moisture content at four microwave frequencies (Ulaby et al., 1986a).

Figure 1.2 illustrates the changing value of the dielectric constant with increasing soil
moisture and the response at different microwave frequencies. As the frequency increases,
€' decreases and €" increases with increasing soil moisture (Fig. 1, Ulaby et al.,, 1986). The
dielectric constant is affected by the observation frequency and soil properties including soil
type, soil water state (whether bound to soil particles or freely occurring), soil temperature,
texture and salinity (Schmugge, 1983; Engman and Chauhan, 1995; Ulaby et al., 1986a).

The conversion of an estimate of soil dielectric constant into a soil moisture estimate is a
stage common to most soil moisture retrieval algorithms. This requires a model describing
the dependence of soil moisture on dielectric permittivity.
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The semi-empirical dielectric mixing model of Dobson et al. (1985) gives the dielectric
constant as a function of soil temperature, moisture, texture, and observation frequency, for
both the real and imaginary parts of the dielectric constant, and is valid for frequencies
between 1.4 and 18 GHz. At frequencies less than 4GHz, the mixing model does not fully
account for the dielectric properties of bound water at low soil moisture contents.

Peplinski et al. (1995) extended the semi-empirical dielectric mixing model of Dobson et al.
(1985) to be valid over the whole range of frequencies between 0.3 and 18 GHz. The model
of Peplinski et al. (1995) is a popular soil-water-air dielectric mixing model as it represents a
practical compromise between the complexity of theoretical modelling and the simplicity of
empirical models. It also has validity over a wide range of observation frequencies and
accounts for the significant factors of soil texture and temperature. Dielectric mixing models
are discussed in more detail in the report.

Mironov (2004) is often being used in place of the models from Peplinski and Dobson due to
the fact it works better for sandy soils.

Surface Roughness

1.5.17.

1.5.18.

1.5.19.

1.5.20.

V01_00

Without accurate information on surface roughness, the retrieval of soil moisture with
single-wavelength, single-pass SAR is not possible (Moran et al., 2006; Walker et al., 2004).
However, the effects of roughness and soil moisture are separable at low frequency (L-band)
for bare soil surfaces when fully polarimetric SAR data are available (Hajnsek, 2002).
Additionally topographic information is required for incidence angle corrections; such
information is available from InSAR, fully polarimetric PoISAR, and other sources. In any
event, repeated measurements of surface roughness and fine resolution topographic
information are required.

Surface roughness is not an intrinsic property of “random” rough surfaces (commonly used
to describe soil surfaces and in the modelling of backscatter). Both frequency and incidence
angle determine how “rough” any surface appears to be, so that any description of a surface
as rough or smooth must be qualified by reference to the illuminating (microwave)
radiation. A surface that appears rough at X-band may appear smooth at L-band or P-band,
and at grazing incidence and scattering angles all surfaces begin to appear smooth. The
distinction between rough and smooth, although somewhat poorly defined, is important,
since only for smooth surfaces may the effects of surface roughness and dielectric
permittivity upon backscatter be de-coupled (Hajnsek et al., 2002, 2003a/b; Williams, 2008).

As wavelength increases, soil surfaces appear increasingly smooth, and ground-volume
scattering can increase in significance as the specular field increases. Ground-volume
scattering is influenced by ground moisture content, and the contribution to backscatter
from ground-volume interactions can be estimated using polarimetry (Hajnsek et al., 2009)
and polarimetric SAR interferometry (Cloude and Williams, 2005; Neumann et al. 2010).

Surface roughness may vary more over time and space in managed ecosystems such as
cropland, as compared to natural ecosystems and dense forest. The consistent row structure
of crops creates a periodic pattern that complicates the interpretation of data (Beaudoin et
al., 1990, Giacomelli et al., 1995). Surface roughness of paddocks will likely change in
imagery acquired on sequential satellite passes with a revisit time of 30 days or more
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(Wutherich, 1997). Data acquired from different satellite orbit tracks may incur large
differences in view angle, and so surface roughness may change with respect to field
direction (Wutherich, 1997).

Past backscatter modelling was limited in that models were invalid outside their roughness
domains, with approximations applicable either to smooth or rough surfaces (Tsang, Kong
and Shin, 1985; Ogilvy, 1991; Thorsos and Jackson, 1991). These limitations were in large
part relaxed with the development of the Integral Equation Method (IEM) for calculating
surface backscatter coefficients, although even this model was generally applied to surfaces
characterized by a single-scale roughness, described by the two classical parameters of root
mean square (RMS) height and “correlation length”. It has been observed that natural rough
surfaces are not single-scale, but multi-scale (Davidson et al., 1998, 2000) and the IEM has
been adapted to use multi-scale correlation functions (Manninen 1997). The multi-scale
nature of naturally rough soil surfaces has serious implications for the estimation of
correlation lengths: correlation length estimates vary according to the size of the area
sampled. If forward modelling is used in a soil moisture retrieval algorithm, consistency of
sampling area should be maintained.

Vegetation Scattering

1.5.22.

1.5.23.

1.5.24.

Vegetation cover absorbs and scatters some of the incident radiation, and in so doing,
reduces the sensitivity of the microwave signal to soil moisture content. Absorption is
influenced both by the vegetation water content (Schmugge, 1985) and the structure of
vegetation since the effective dielectric constant of a random medium contains a
contribution from the spatial correlation of the local dielectric constant in mean field theory
(Frisch, 1968).

The amount of scattering is determined by canopy structure and geometry (van de Griend
and Engman, 1985), as well as the water content and biomass of the vegetation. The effect
of vegetation is also dependent on radar imaging parameters including wavelength, view
angle and polarisation (Ulaby et al., 1986). The effect of vegetation may be reduced by
increasing the wavelength of observation (Brown et al., 1992; van Zyl, 1993). Schmulluis and
Furrer (1992) obtained good results over crops using L-band. Shorter wavelength C- and X-
band data are more sensitive to vegetation cover, although there is a greater chance of
penetration when vegetation is dry (Brown et al., 1992).

Grassland areas can be problematic, with large volumes of moist leaf litter that masks the
relationship between backscatter and soil moisture (Sano et al., 1998). According to Ulaby et
al. (1996), active microwave remote sensing has demonstrated potential to measure the
volumetric moisture content of the near-surface soil layer with an RMS error of 0.035 vol/vol
at low frequencies (e.g., <2 GHz) providing the vegetation cover is less than 15cm.

1.6. Review of Radar Requirements for Soil Moisture Measurement

1.6.1.

1.6.2.

V01_00

A number of studies have addressed radar optimal sensor configuration for soil moisture
retrieval.

Due to the sensitivity of the backscattering coefficient to surface roughness and vegetation
13
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cover, and the differing effect of various combinations of frequency and incidence angle,
there has been a great deal of discussion in the literature about an “optimum” configuration
for active microwave remote sensing with satellites. The recommendations that have been
made in literature differ from one researcher to the next, so a brief review of the
recommendations that have been made is presented below.

Soil moisture measurement using active microwave remote sensing observations is difficult
due to the competing effects of soil moisture content and surface roughness. It has been
noted by Chen et al. (1995) that the larger the incidence angle the larger the sensitivity to
soil moisture content, but because of the increasing influence of surface roughness, there
must be a compromise. As frequency is increased the active microwave remote sensor
becomes more sensitive to surface roughness for all soil moisture conditions and sensitivity
to soil moisture content decreases.

To minimise the roughness effects that may often dominate the active microwave remote
sensing data in agricultural fields (e.g., Koolen et al., 1979; Beaudoin et al., 1990), an early
scatterometer study by Ulaby et al. (1978) suggested that the optimum parameters are
frequencies from 4 to 5GHz with HH polarisation having an incidence angle between 7° and
17° from nadir. This agrees closely with the recommendation made earlier by Ulaby and
Batliva (1976) who suggested that optimum parameters are a frequency of 4GHz with HH or
VV polarisation having an incidence angle between 7°and 15° from nadir, for bare fields.
Operation of a SAR at such low incidence would of course require enhanced bandwidth in
order to maintain range resolution.

Altese et al. (1996) have shown that the effect of surface roughness on backscattering is
minimised by a sensor configuration having an incidence angle of around 20° and
observation frequency between 4.5 and 7.5GHz. Altese et al. (1996) also found that the
effect of roughness correlation length |/ on backscattering was less than for surface
roughness, with its effect minimised at an incidence angle around 30° and observation
frequency less than 6GHz. However, Beaudoin et al. (1990) have shown that a significant
effect on backscattering can be expected from the periodic rows of row crops at all
incidence angles except around 5°, with a maximum effect in the range of 25° to 40°. In
addition, Dobson and Ulaby (1986) have suggested that the orbital sensor intended for soil
moisture sensing should have an orbital inclination greater than 15° from polar orbit in order
to minimise the effects of row direction at most latitudes.

Soil moisture estimates with C-band SAR data have been found to be better at both high and
low incidence angles rather than using a single incidence angle (Srivastava et al., 2003,
Baghdadi et al. 2006).

Although roughness effects can be minimised by using a sensor with a low incidence angle,
this configuration of look angle is very unlikely on a spacecraft system, as the resolution
decreases with decreasing incidence angle according to 1/Siné@ (Autret et al., 1989).
Therefore, if a low incidence angle is not acceptable, Autret et al. (1989) suggest that the
best configuration for soil moisture measurement requires the simultaneous use of two
polarisations (HH and VV) with an incidence angle greater than 35°.

To minimise the effect of vegetation on soil moisture sensing, Dobson and Ulaby (1986)
concluded that the optimum parameters should be frequencies of less than 6GHz and
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incidence angles of less than 20°. Using these observation parameters, both direct scattering
by the vegetation and the effective attenuation loss related to the two-way transmission
through the canopy are minimised. At higher incidence angles, the backscattering
contribution of the canopy increases and is dominated by the return from vertically aligned
stalks and cobs, whereas leaves dominate the canopy loss component. Of course this early
study was conducted long before the potential of SAR polarimetry to separate the various
scattering mechanisms was fully appreciated.

It has also been noted that the co-polarised measurements of o, and o, , and their linear

combinations, are the best choice for estimation of soil moisture content, as they are most
sensitive to soil moisture changes and least sensitive to calibration accuracy and vegetation
cover (Shi et al.,, 1997). The influence of surface roughness can be minimized using, for
example, the co-polarized HH/VV ratio (Chen, 1995). Furthermore, co-polarised channels can
be calibrated directly with passive targets like corner reflectors, while cross-polarised
channel calibration relies upon measurements made on the co-polarised channels (van Zyl,
1990), and is hence less accurate. Dubois et al. (1995a) have noted that to achieve 0.04
vol/vol accuracy in soil moisture content requires a 0.5dB accuracy of the relative calibration
and 2dB accuracy in the absolute calibration.

For ERS, which operated at a characteristic incidence angle of 23° (VV polarisation and
frequency of 5.3 GHz/C-band), the roughness and vegetation effects would be minimised.
Soil moisture inversion from ERS data for regions with short vegetation cover (plant biomass
less than 1 kg m™) appeared possible to Dobson (Dobson et al., 1992), although it should be
stressed that this study was theoretical and considered only one characteristic soil surface.

An understandable rule of thumb is that soil moisture retrieval is improved by using more
than one measurement. For example multi-frequency measurements of 6° provided better
estimates of soil moisture over those derived from single frequencies (Rao et al., 1993).

A consensus derived from the literature would indicate that low incidence angles, long
wavelengths (L-band) and single HH or multiple polarizations, including quad-polarimetry or
compact-polarimetry are the pre-eminent sensor configurations required for soil moisture
estimation.

2. REVIEW OF SATELLITE SOIL MOISTURE MISSIONS

2.1. Overview

2.1.1.

2.1.2.

V01_00

For the purpose of this review, the emphasis of the discussion is on space-borne active
microwave remote sensing for soil moisture content estimation, although some mention is
made to the role of passive microwave remote sensing.

Despite the recent losses of PALSAR and ENVISAT SAR sensors, SAR systems are on the
increase, and new SAR missions will mean that SAR data is more widely available. Some
characteristics of past, contemporary and planned satellite Synthetic Aperture Radars are
summarized in Table 2.1.

15
Annex 12. Basis Of An Australian Radar Soil 30th June 2013
Moisture Algorithm Theoretical Baseline Document



Z MONASH University  §% 16

2.1.3.

2.1.4.

2.1.5.

2.1.6.

2.1.7.

V01_00

Basis of an ATBD for a radar soil moisture mission

Table 2.1 Characteristics of major space-borne SAR systems (Barrett et al., 2009).

Flatform Sensor Band Polarisation Highest Spatial Swath Mission
Resolution(m) ‘Width (km)
SEASAT SAR L HH 25 100 June-Oct 1978
SIR-A SAR L HH 40 50 Now 12-15th
1981
SIR-B SAR L HH 25 30 Oct 5-13th
1984
Almaz-1 SAR s HH 13 172 Mar 31st 1991-
Oct 17% 1992
ERS-1 AMI C v 30 100 July 17th 1991-
Mar 10 2000
JERS-1 SAR L HH 18 75 Feb 11th 1992-
Oct 12* 1993
SIR-C/X-SAR SIR-C LCX VV.HHHV 30 10-200 Apnl 1994
X-SAR VH, HH Oct 1994
ERS-2 AMI C Vv 30 100 Apnl 217 1995-
RADARSAT-1 SAR C HH 10 100-170 Nov 13: 199:5-
SRTM C-SAR cX VV HH 30 50 Feb 11™ - 22*
X-SAR HH 2000
ENVISAT ASAR C VVHHHHVV 30 100-400 Mar 1st 2002-
HV/HH VHVV
ALOS PALSAR L Quad-pol 10 70 Jan 24 200¢-
TemSAR-X X-SAR X Quad-pol 1 10-100 June 15* 2007-
RADARSAT-2 SAR C Quad-pol 3 10-500 Dec 14* 2007-
COSMO SAR-2000 X Quad-pol 1 10-200 June 8% & Dec
SkyMed Seres &* 2007-
TecSAR SAR X HH HV,VH, VWV 1 40-100 21" Jan 2008
SAR-Lupe SAR X - <1 - Dec 2006 & Jul
2008-
Kondor-5 SAR s HHVV 1 - 2009
TinDEM-X SAR X Quad-pol 1 10-150 2009
RISAT SAR C Quad-pol 3 30-240 2009
HI-1C SAR s HH VV 20 - 2009
ARKON-2 SAR XLP - 2 - 2011
Sentinel-1 C-SAR c Quad-pol 5 30-400 2011
MapSAR SAR L Quad-pol 3 20-55 2011
KompSAT-5 SAR X HH HV,VH, VW 20 100 2011
SAOCOM-1 SAR L Quad-pol 7 50-400 2011
RADARSAT SAR C Quad-pol 3 20-500 2012-2014
Constellation
Mission
SMAP SAR L HH HV, V'V 3km 30-1000 2012
DIESDynl SAR L Quad-pol 25 340 2015

Prior to 2002, civilian satellite SARs were capable only of single channel (i.e., frequency) and
mode (i.e., polarisation) observations, wherein the influences of both surface roughness and
vegetation on backscatter cannot easily be resolved from that of soil moisture. The launch of
ENVISAT marked the beginning of a move towards multi-configuration sensors, with the
Advanced Synthetic Aperture Radar (ASAR) featuring greater capability in terms of coverage,
range of incidence angles, polarization and modes of operation than any of its predecessors.

The increasing number of SAR satellites now available and the higher spatial resolution along
with shorter revisit intervals offers greater potential than ever to improve the quality with
which surface soil moisture can be retrieved from radar data (Baghdadi et al., 2008).

Of the contemporary and planned radar missions, the ones most suitable for soil moisture
monitoring are ESA’s Sentinel-1, NASA's SMAP and CONAE's SAOCOM. A discussion
regarding algorithm development for soil moisture retrieval from these missions may be
found in Section 6.

The passive microwave missions dedicated to soil moisture measurement include SMOS and
SMAP. However, soil moisture products have also been derived from sensors with non-
optimal wavelengths such as AMSR-E and AMSR2.

ESA launched the Soil Moisture and Ocean Salinity (SMQS) satellite in November 2009, with
the aim of measuring soil moisture and ocean salinity for use in climate and hydrological
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forecasting (Kerr et al., 2001;2010). SMOS provides a global revisit time of 3 days, and its
only payload is an L-band 2D imaging radiometer. The spatial resolution is of 35 — 50km and
the incidence angle range of 0 — 50°. The “Disaggregation based on Physical And Theoretical
scale Change” (DisPATCh) model (Merlin et al., 2012) is being used to disaggregate the low
resolution SMOS soil moisture product to high resolution (1km), thus allowing the use of
SMOS data across small scale applications. DisPATCh uses as input the evaporative fraction
of each 1km pixel derived from spectral data obtained from MODIS (Moderate Resolution
Imaging Spectroradiometer), which implicitly takes into account the moisture distribution at
the 1km scale. This model has been developed using data from the OzNet soil moisture
network (www.oznet.org.au; Smith et al., 2012).

The Soil Moisture Active Passive (SMAP) mission is a joint effort of NASA’s Jet Propulsion
Laboratory (JPL) and Goddard Space Flight Center (GSFC). The target launch date is October
2014 (Entekhabi et al. 2010). SMAP development is drawing on the heritage of the
Hydrosphere State (Hydros) mission (Entekhabi et al. 2004). SMAP will provide 3km radar-
only soil moisture product, considered a research product, as well as 40km radiometer only
and 10km active-passive downscaled products.

The Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E),
operated by JAXA and onboard NASA's Aqua satellite operated at 6 dual polarized
frequencies, centred at 6.9, 10.6, 18.7, 23.8, 36.5 and 89.0 GHz (Draper et al., 2009). AMSRE-
E has been in orbit since 2002, but routine observations ceased in October 2011. The spatial
resolution of each individual band ranged between 5.4 and 56 km. Global soil moisture
measurements were available every 2 days (Njoku et al, 2003). The Global Change
Observation Mission 1** — Water (GCOM-W1), a continuation of AMSR-E, was launched in
May 2012. The GCOM comprises two satellites, GCOM-W, a microwave radiometer, for
observing water circulation changes and GCOM-C, a multi-channel optical imager, for
monitoring climate changes. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is
onboard GCOM-W1. Like its predecessor, AMSR2 uses six frequencies ranging from 7 to 89
GHz. Each scan observes an area of approximately 1,450 km, so providing coverage of 99%
of earth’s surface in 2 days. GCOM-W1 is the first of three planned missions, which would
extend AMSR measurements out for the next 15 years.

The Advanced SCATterometer (ASCAT) on board Metop-A was launched in October 2006 and
it’s the successor to the ERS1 and ERS2 scatterometers. ASCAT is a real aperture radar
operating at 5.255 GHz (C-band) and using vertically polarised antennas. Two sets of three
antennas measure the electromagnetic backscatter in two 500 km wide swaths, one each
side of the satellite ground track. Soil wetness is retrieved from ASCAT scatterometer data
using the TU Wien change detection method (Wagner et al. 1999a,b,c; Wagner and Scipal,
2000; Wagner et al., 2003). Since December 2008 the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT) has been disseminating global 25km
ASCAT surface soil wetness data in near real-time (within 135min after sensing) over its
broadcast system EUMETCast.

Hornacek et al. (2012) suggested that ESA’s proposed Sentinel-1 system, the successor to
ENVISAT ASAR, could be used to provide an operational service to derive 1km soil wetness
data using change detection algorithms developed and demonstrated with ENVISAT ASAR
Global Monitoring mode, and in the ASCAT. The Sentinel-1 mission consists of two polar-
orbiting C-Band SAR satellites designed to map the European land mass once every four days
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in interferometric wide swath mode (IWS), and the global land surface once every 12 days
(MacDonald, Dettwiler and Associates Ltd, 2011). It is expected that Sentinel-1A will be
launched mid-2013 and Sentinel-1B about 18 to 24 months later.

SAOCOM (Spanish for Argentine Microwave Observation Satellite) is a planned Earth
observation satellite constellation of the Argentine Space Agency
(www.conae.gov.ar/eng/satelites/saocom.html). Originally launch was announced for 2010
(1A) and 2011 (1B), but delays have pushed the launch dates back (tentatively) towards 2014
and 2015 respectively for 1A and 1B satellites. SAOCOM 2A and 2B satellites are due for
launch in 2019 and 2020 respectively. Those two satellites along with four X-band SAR
equipped COSMO-SkyMed satellites from the Italian Space Agency ASI would form the
Italian-Argentine System of Satellites for Emergency Management (SIASGE) constellation.
While SAOCOM is not planned to provide data over Australia, it may be possible to partner
with them to get downloads for Australia.

There is also the proposed TanDEM-L of DLR (the German Aerospace Center), an
interferometric L-band sensor for measuring dynamic earth processes (Moreira et al., 2011),
but this is still at the conceptual phase. The mission concept comprises two satellites flying
in close formation, with PolInSAR and single- and repeat-pass interferometric imaging
modes. The design of TanDEM-L will facilitate systematic observation of above ground
biomass, earth surface deformation, snow and ice movements, changes in surface soil
moisture and land use, and ocean surface currents. As this mission is still in the conceptual
phase, it may be possible for Australia to become a partner on this mission.

Due to funding cuts, the DESDynl (Deformation, Ecosystem Structure, and Dynamics of Ice)
mission of NASA is on indefinite hold. The mission was scheduled for launch in 2017, and
featured a ~10m resolution L-band SAR system with multiple polarizations. Repeat-pass
INSAR would have been used for surface deformation and ice sheet dynamics
measurements, and PolISAR for biomass estimation and spatial variability of ecosystem
structure. The DESDynl radar employs a novel imaging technique called “SweepSAR” that
allows wide swath (~240km) imaging at full resolution and full polarization (Rosen et al.,
2011). As in the case of TanDEM-L, it may be possible for Australia to become a partner on
this mission should the funds become available in the future.

Technical specifications of these and other satellite missions relevant for soil moisture
applications are provided in Table 2.2. Further information is provided in the following
Sections.

Any soil moisture mission for Australia would need to differentiate itself from the
capabilities of these existing and anticipated missions.
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Table 2.2. Technical specifications of satellite missions relevant to soil moisture applications (SP: HH or HV or VH or VV, DP: HH+HV or VV+VH, QP: HH+HV+VH+VV, CL: RH+RV or
LH+LV).
Freq. Orbit Incidence Rad. Swath Spatial Soil moisture Single/Const
Sensor Band Angle (°) NESZ Stability (km) resolution Imaging modes dedicated (Y/N) ellation Launch / Notes
432 - 438 Space Object
MHz 672 km, sun- : _ _ ) ) . Tracking System
BIOMASS synch, 17day RC 26-33 27dB 0.35dB 40-60 & EEEE Interference
(6MHz) limits operation
1257.5MHz 628 km, sun- Spotlight Aug. 2013
h, ' -
PALSARII (24,42MHz sync 8-70 -28dB 0.2dB 50-70 - Stripmap N Single GaN, up/down
FP) 14 day RC ScanSAR chirp
Concept, DLR,
1.2575GHz 630km, sun- desigrl:ed for
TerraSAR-L synch, 14 day 20-45 -30dB - 40-70 - - N Single
(80MHz max) RC repeat-pass
IFSAR
3.2GHz 580 km, Concept,
NovaSAR 16-34 - - 15-20 - - N Single SSTL/ESA, not
(25MHz) sun-synch, yet approved
Near polar
sun-synch,
693k
m 2146 | o C-band (5410MHz)
12-day, 175 20(x20) Dual(HH+HV,VV+VH) Mid. 2013 (1A)
orbit repeat 23-37 <1dB 5mx5m . 2015 (1B)
Sentinel-1 5.410GHz e -22d8 >80 Single (HH, W) N 2sat
20-47 (3sigma) 5mx5m 12 day RC for a
(30MHz) 3.6 days >410 Dual(HH+HV,VV+VH) single satellite
20-47 20x40
Europe xarm Dual(HH+HV,VV+VH)
6-12 days
Global
SMAP 1.26GHz 670km, 40 -30dB 0.5dB 1000 1-3km L-band VV, HH, HV Y Single Oct. 2014
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20

(15kHz) sun-synch 40km L-band radiometer
2-3 days
Sun-synch
Stripmap SP/DP 1A 2014-2019
620 km 17-50 20-40 10m
1.275GHz TopSAR narrow SP/DP/QP 1B 2015-2020
SAOCOM 97.89° 17.6-47 -35dB 0.25dB 100-150 30-50m 4 sat
(21 MHz) TopSAR wide SP/DP/QP/CL 2A 2015-2020
16 days (1 Sat) 17.6-49 220-350 50-100m
2B 2016-2021
8 days (Const)
TanDEM-L - - - - - - - PolInSAR 2 sat 2019
T 700 km 14 channels, 6 freq, dual pol
55 - = 1450 3- 35km Single 2012
(AMSR-2) 2 days RC (7.3, 10.65, 18.7, 23.8, 36.5, 89
GHz)
Sun-Synch
756 km
SMOS 1.413 GHz 32.5° 0-50 - - 1000 2D Imaging Radiometer (H and Single 2009
35-50km V pol)
3 days
705 km
12 channels, 6 freq, dual pol
AMSR-E 47.4° 54— q p
2 days 56km ,9, 10.6, 18./, 23.5, 56.5, &9.
GHz)
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2.2. Sentinel

2.2.1. The Sentinel series is being developed by the European Space Agency (ESA) for continuation
of operational applications using C-band SAR (MacDonald, Dettwiler and Associates Ltd,
2011). The Sentinels constitute the first series of operational satellites responding to the
Earth Observation needs of the European Union (EU) — ESA Global Monitoring for
Environment and Security initiative. ESA is currently undertaking the development of 3
Sentinel mission families. Each Sentinel is based on a constellation of 2 satellites in the same
orbital plane, which allows to fulfil the revisit and coverage requirements, and to provide a
robust and affordable operational service.

2.2.2. Sentinel-1 has been designed to address primarily medium to high resolution applications
through a main mode of operation that features both a wide swath (250 km) and high
geometric (5 m x 20 m) and radiometric resolution. Over sea—ice and polar zones or certain
maritime areas, an extra-wide swath mode may be used to satisfy the observation
requirements of certain service providers (e.g. sea—ice monitoring), in order to ensure in
particular wider coverage and better revisit time by sacrificing geometric and radiometric
resolution.

2.2.3. The Sentinel-1 mission consists of two polar-orbiting C-Band SAR satellites designed to map
the European land mass once every four days in interferometric wide swath mode (IWS) and

the global land surface once every 12 days using the 2 satellite constellation.

2.2.4. Based on Sentinel-1 acquisition modes, Table 2.3 outlines the anticipated science products:

Table 2.3. Anticipated science products from Sentinel-1 (MacDonald, Dettwiler and Associates Ltd, 2011).

Acquisition L1 Resolution class L2 product L2 product
mode product component

StripMap (SM) | SLC OCN osw, owl,
RVL

GRD FR. HR, MR
Interferometric | SLC OCN OWI, RVL
Wide Swath | GRD HR, MR
(Iw)
Extra Wide | SLC OCN OWI, RVL
Swath (EW) GRD HR, MR
Wave Mode | SLC OCN OSW, RVL
(Wv) GRD MR

(L1 Product types include SLC: Single-Look Complex, and GRD: Ground Range Multi-look Detected. Product
resolutions include FR: Full Resolution, HR: High Resolution, MR: Medium Resolution. L2 Product types include
OCN: Ocean. L2 Product Components include OSW: Ocean Swell spectra, OWI: Ocean wind field, and RVL:
Radial Surface Velocity).

2.2.5. Sentinel-1 level 1 products will contribute to a range of operational applications including oil
spill and ship detection, arctic sea ice mapping, land-surface motion detection, forest
monitoring, and soil wetness estimation.
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2.2.6. Sentinel-1 level 2 products will contribute to numerical weather predication and wave
forecasting and modelling.

2.2.7. It is expected that Sentinel-1A will be launched mid-2013 and Sentinel-1B about 18 to 24
months later.

2.3. SMAP

2.3.1. SMAP sensor and algorithms are being designed to meet the Level 1 requirements for soil
moisture which state “... The baseline science mission shall provide estimates of soil
moisture in the top 5cm of soil with an error of no greater than 0.04 vol/vol (one sigma) at
10km spatial resolution and 3-day average intervals over the global land area excluding
regions of snow and ice, frozen ground, mountainous topography, open water, urban areas,
and vegetation with water content greater than 5kg/m’ (averaged over the spatial
resolution scale)...”

2.3.2. The SMAP instrument incorporates an L-band radar and an L-band radiometer that share a
single feed horn and parabolic mesh reflector. The reflector is offset from nadir and rotates
about the nadir axis, providing a conically scanning antenna beam with a surface incidence
angle of approximately 40°. The provision of constant incidence angle across the swath
simplifies the data processing and enables accurate repeat-pass estimation of soil moisture
(and freeze/thaw) change. The 6m diameter reflector yields a 3dB antenna footprint of
40km for the radiometer and 1km for the radar.

2.3.3. The goal is to combine the attributes of the radar and radiometer observations (in terms of
their spatial resolution and sensitivity to soil moisture, surface roughness, and vegetation) to
estimate soil moisture at a resolution of 10km, and freeze-thaw state at a resolution of 1-
3km. A radar-only soil moisture product will have a 3km spatial resolution.

2.3.4. SMAP planned data products are listed in Table 2.4. Level 1B and 1C data products are
calibrated and geo-located instrument measurements of surface radar backscatter cross-
section and brightness temperatures derived from antenna temperatures. Level 2 products
are geophysical retrievals of soil moisture on a fixed Earth grid based on Level 1 products
and ancillary information; the Level 2 products are output on half-orbit basis. Level 3
products are daily composites of Level 2 surface soil moisture and freeze/thaw state data.
Level 4 products are model-derived value-added data products that support key SMAP
applications and more directly address the driving science questions.

2.3.5. The 10-km soil moisture requirement will be met for SMAP by combining the radar and
radiometer measurements in an algorithm that optimizes the high-resolution attribute of
the radar with the higher accuracy attribute of the radiometer, as described in the
L2_SM_AP ATBD (Seung-bum Kim et al., 2012).

2.3.6. The 3-km radar-only soil moisture product (L2_SM_A) is considered a research product for
SMAP and is not expected to be as accurate as either the 40km radiometer only (L2_SM_P)
or active-passive downscaled (L2_SM_AP) SMAP data products, especially under more
densely vegetated conditions (~3-5kg/m?). The SMAP mission has targeted 0.06 vol/vol as
the L2_SM_A accuracy goal, for vegetation water contents up to 5 kg/m’. It is acknowledged
that this may not be feasible at the higher vegetation amounts.

22
Vv01_00 Annex 12. Basis Of An Australian Radar Soil 30th June 2013
Moisture Algorithm Theoretical Baseline Document



% MONASH University & 23

2.3.7.

2.3.8.

2.3.9.

2.3.10.

Basis of an ATBD for a radar soil moisture mission

The 3-km radar only product is currently considering a range of retrieval algorithm
approaches, as described in the L2_SM_A ATBD.

The SMAP radiometer measures the four Stokes parameters that characterize the
polarization state of the microwave radiation at 1.41GHz. The third Stokes parameter
measurement can be used to correct for possible Faraday rotation caused by the
ionosphere, although such Faraday rotation is minimized by the selection of the 6am/6pm
sun-synchronous SMAP orbit (Yueh, 2000; Freeman and Saatchi, 2004).

At L-band anthropogenic Radio Frequency Interference (RFl), principally from ground-based
surveillance radars, can contaminate both radar and radiometer measurements. The
measurements of the SMOS mission indicate that in some regions RFl is present and
detectable. The SMAP radar and radiometer electronics and algorithms have been designed
to include features to mitigate the effects of RFI.

To combat RFI the SMAP radar utilizes selective filters and an adjustable carrier frequency in
order to tune the pre-determined RFI-free portions of the spectrum while in orbit. The SMAP
radiometer will implement a combination of time and frequency diversity, kurtosis
detection, and use of fourth Stokes parameter thresholds to detect and where possible
mitigate RFI effects.

Table 2.4. Anticipated SMAP Data Products

Product Description (Ri’si‘;ﬂ;';gm Latency
L1A_TE RadiometerData in Time-Order - 12hrs
L1A_S0O RadarDatain Time-Order - 12hrs
L1B_TEB Radiometer T;in Time-Order (36x47 km) 12hrs
L1B_S0_LoRes | Low ResclutionRadar g, in Time-Order (5x30km) 12hrs Instument Date
L1C_S0_HiRes | High Resolution Radar g, in Half-Orbits “1'3k|':1m) 12hrs
L1C_TB Radiometer T in Half-Orbits 36 km 12hrs
L2_SM_A Soil Moisture (Radar) 3 km 24 hrs
L2_SM_P Soil Moisture (Radiometer) 36 km 24 hrs S{ﬂ':‘rl}?g r?;t)a
L2 SM_AP Soil Maisture (Radar+ Radiometer) Skm 24 hrs
L3 FT_A Freeze/Thaw State (Radar) 3km 50hrs
L3_SM_A Soil Moisture (Radar) Jkm 50hrs Seience Data
L3_SM_P Soil Moisture (Radiometer) 36km 50hrs (Daily Composite)
L3_SM_AP Soil Moisture (Radar + Radiometer) 9 km 50hrs
L4_SM SoilMaisture (Surface and Root Zone ) 9km 7 days S elence
L4 C Carbon NetEcosystem Exchange (NEE) 9km 14 days Value-Added

2.4. SAOCOM

2.4.1.

V01_00

SAOCOM (SAtélite Argentino de Observacion COn Microondas, Spanish for Argentine
Microwaves Observation Satellite) is a planned Earth observation satellite constellation of
the Argentine Space Agency (Comision Nacional de Actividades Espaciales) CONAE. SAOCOM
is a joint proposal by CONAE, Argentina and ISA, Italy, for a 4 satellite constellation with
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application in soil moisture mapping. It is anticipated that observations acquired by
SAOCOM will contribute to agricultural, hydrological and health applications, natural
resource management and disaster monitoring and management.

The SAOCOM series are Argentina's first Remote Sensing mission carrying instruments on
board which operate at microwave wavelengths, including an L-band full polarimetric SAR
and a thermal infrared camera. Four satellites are planned, SAOCOM 1A, 1B, 2A and 2B. Each
will be equipped with an L-band full polarimetric SAR. Each weighs 1600 kg and their main
purpose will be monitoring for the prevention of disasters. The first two satellites are
currently under simultaneous development.

Originally launch was announced for 2010 (1A) and 2011 (1B) but delays and further delays
have pushed the launch dates back tentatively towards 2014 and 2015 respectively for 1A
and 1B satellites. SAOCOM 2A and 2B satellites are due for launch in 2019 and 2020
respectively.

Along with four X-band SAR equipped COSMO-SkyMed satellites from the Italian Space
Agency ASI, SAOCOM will form the Italian-Argentine System of Satellites for Emergency
Management (SIASGE) constellation.

The L Band SAR will operate at 1.275 GHz and will be right-observing (with possible left-
observing capability) from a frozen, quasi-circular, sun-synchronous orbit at 620 km altitude.
The satellite will have a 16 day revisit time, with an 8 day revisit for the twin-constellation
(1A and 1B). SAR imagery will have 10-100 m resolution, in 30—350 km swath widths at 20-
50° incidence with anticipated radiometric accuracy of 0.25 dB (full mission) and 0.05 dB
(within a scene).

Available polarization modes include single (HH or VV), double (HH/HV or VV/VH),
quadrupolar (HH, HV, VH and VV) and Compact mode Circular-Linear (CL-POL) whereby the
system transmits one circular polarization (right or left) and receives two linear polarizations
simultaneously (RH and RV or LH and LV).

SAOCOM 1A operation modes include stripmap, TOPSAR (narrow and wide) in all linear
polarization modes, TOPSAR Narrow linear polarization modes, and a technological mode
TOPSAR Wide CL-POL (designed exclusively for soil moisture assessment in the Pampa
Humeda region).

Despite advances in sensors and methodologies, the development of robust methods for
estimating surface soil moisture has been problematic. Consequently, many different
techniques and algorithms have been developed for soil moisture content retrieval, using
various modes of SAR measurements.

The coverage by SAOCOM will be limited, as it is not intended to be a global mission. The
baseline acquisitions will include a large part of Europe for exclusive use by ASI (Italian Space
Agency), and Argentina/South America for exclusive use by CONAE. Acquisitions by other
users and for other parts of the world will need to be negotiated.
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3. APPROACHES TO RADAR SOIL MOISTURE RETRIEVAL USING SNAP-SHOT ALGORITHMS

3.1. Overview

3.1.1.

3.1.2.

3.1.3.

3.1.4.

A standard approach to biophysical parameter retrieval, such as soil moisture inversion, is to
interpret the measured signals at the time of measurement using models: fitting the model
signal by varying the model parameter values (of which soil moisture is one). This process is
referred to here as snap-shot algorithms, and is distinct from others that use two or more
acquisitions that are distributed through time.

Snap-shot models for surface backscatter may be divided into several categories:
theoretical, empirical or semi-empirical, with analytical or numerical solution approaches.
They may also include single polarisation or polarimetric solutions. In each case the nature
of the random rough surface must be specified, along with the imaging parameters. The
parameters include (soil) dielectric constant, wavelength, polarisation and incidence angle.
The surface description is often limited to two parameters, RMS surface height and
correlation length, which are not always sufficient to describe natural surfaces due to the
multi-scale nature of roughness (Davidson et al., 1998/2000, Manninen, 1997).

The use of such single-scale models to recover soil moisture from multi-scale natural
surfaces often leads to retrieval ambiguities. Thus, while theoretical models may have
justification from the point of rigour, in practice their use may be limited by the availability
of proper surface descriptions, or their ease of application.

Surface roughness and correlation may be inverted at the same time as soil moisture, but
only if supported by multi-frequency or polarisation measurements, and providing the
roughness conditions meet the validity constraints of the model. In general a priori
information on the surface properties is required, making soil moisture retrieval over large
areas problematic. Additionally, even when surface information is available, its limitations
do not permit the full description of the surface properties, and the restrictive assumptions
made when deriving analytic backscatter expressions imply that they can seldom be used to
invert data to a high degree of accuracy when measured over natural surfaces.

3.2. Bare Surfaces using Numerical Surface Backscatter Models

3.2.1.

3.2.2.

3.2.3.

V01_00

Numerical methods include Method of Moments (MoM) (Tsang et al. 2001), the Extended
Boundary Condition Method (EBCM) (Kuo and Moghaddam 2007), the finite element
method (Lawrence et al., 2010; Lou et al., 1991) and the finite difference time domain
method (Chan et al. 1991).

“Fast” methods to further improve computational efficiency have also been developed,
including the Sparse Matrix Canonical Grid (SMCG) method (Johnson et al. 1996), the
Physical Based Two Grid (PBTG) method (Li and Tsang 2001), and the multilevel UV method
(Tsang et al. 2004). Fully 3D simulations of Maxwell equations (where the height function
z=f(x,y) of the rough surface varies in both horizontal directions) are required to predict
realistic surface behaviours.

The 3D full wave method of moments simulations based on the “Numerical Maxwell Model
in 3 Dimensions” simulations (NMM3D) began in the mid-1990’s (Tsang et al. 1994; Tsang et
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al. 2001). The NMM3D of the Univ. Washington (UW) was selected as the benchmark
forward model for the bare surface class for SMAP and was used to compute L-band 40° 3-D
surface backscattering for 200 cases including varying surface RMS heights, correlation
lengths, and soil permittivities for co-polarization (Huang et al. 2010) and cross-polarization
(Huang and Tsang 2012).

Numerical methods, which avoid approximations beyond those used to model the surface
topographies but require Monte Carlo simulations and much greater computational costs,
have also been employed by SMAP researchers to obtain bare surface scattering predictions.

The numerical calculations were used to create interpolation tables (or “data cubes”)
wherein interpolated values are within 0.2 dB of the original data values. The maximum RMS
height considered for SMAP was 0.21 wavelength (ks=1.32 which is about 5cm at L band,
where k and s are the wave number and RMS height) so that the cases simulated and the
interpolations used can be applied to cover a wide range of interests.

These results were compared with the Dubois empirical model (Dubois et al. 1995), SPM, KA,
and AIEM. In parallel, a group in the Univ. Michigan Group used a stabilized EBCM method
(Duan and Moghaddam 2011) and computed results up to ks=1. Results of the UW NMM3D
look-up tables were compared with field measurements of co- and cross-polarized
backscattering (Oh et al. 1992). The field data included measurements of soil permittivities,
RMS heights, and correlation lengths (which latter should be used subject to the previous
caveats regarding natural surfaces). The soil surface correlation functions were also
measured and found best matched by exponential correlation functions. These ground truth
parameters were simulated with NMM3D using the exponential correlation function
description. Comparison of NMM3D predictions and measured data shows that good
agreement is achieved. The cross polarization results of NMM3D are also in good agreement
with experimental data.

For both non-woody and woody vegetation on vegetated surfaces the primary approach
utilized was a “discrete scatterer” approximation (Lang and Sidhu 1983; Tsang et al. 2000), in
which each vegetation object, such as a cylinder or disk, is assumed to scatter
independently. Scattered fields calculated in the mean field model from each vegetation
component are summed and averaged over size and orientation distributions in a coherent
model that accounts for vegetation structure.

A first order iterative solution of the radiative transfer equation (Karam et al. 1992; Tsang et
al. 1985) yields similar predictions but neglects a coherent double bounce effect. Several
variations of the discrete scatterer model exist (Arii et al. 2010; Chauhan et al. 1994),
depending on the fidelity with which the vegetation-ground interaction term is treated, the
number of vegetation layers included, the method utilized to compute scattering from
vegetation and surface components, and the approach used for estimating attenuation.

A notable example of a coherent SAR simulation model for forests, suitable for frequencies
between L-band and P-band, is PoISARproSIM (Williams, 2006, earth.eo.esa.int/polsarpro).
Although restricted to simulation of forests, the software has been used widely to
demonstrate the utility of various biophysical parameter retrieval algorithms because of its
high fidelity and proper inclusion of important scattering mechanisms and their inter-
dependence.
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3.3. Bare Surfaces using Theoretical Surface Backscatter Models

3.3.1.

3.3.2.

3.3.3.

3.3.4.

3.3.5.

V01_00

In principle, if the surface topography and surface fields (e.g., roughness and dielectric
constant) are known, backscatter from a surface can be calculated through application of
the Stratton-Chu integral (see e.g. Ulaby et al., 1982), which is an analytical solution of
Maxwell’s equations, and embodies Huygen’s principle for a rough surface. In practice exact
analytical solutions are intractable, and full numerical solutions are computationally
expensive, although increasingly accessible.

Despite complexity hurdles theoretical models may be preferred over empirical and semi-
empirical models as the models are valid for a range of different sensor configurations, and
incorporate directly the effect of surface parameters on backscatter response (Altese et al.,
1996). Theoretical models, for the most part, describe the general trend in backscattering
coefficient with changes in surface roughness (including RMS surface height, correlation
function and correlation length) and soil moisture. However, the complexity of some of the
models and the restrictive assumptions of their simplifications may limit their use for
inversion as a result of failure to meet validity ranges or lack of agreement with
experimental observations (Oh et al., 1992; Dubois and van Zyl, 1994; Dubois et al., 1995b).
This is often bacause knowledge of surface roughness is required for soil moisture inversion,
and incomplete knowledge of surface statistical description can have profound implications
for backscatter predictions.

As a result of the complexity of the surface scattering problem a number of approximations
were developed that yielded simplified expressions for surface backscattering coefficients.
These simplifying approximations were restricted for use to those surfaces for which the
simplifying assumptions were valid.

For example the Small Perturbation Method (SPM) describes the scattering of waves from
slightly rough surfaces (Rice, 1963). The SPM assumes that surface variations are much
smaller than the incident wavelength (recall that surface “roughness” is wavelength and
incidence angle dependent). The SPM solves for the surface fields in the Stratton-Chu
equation using a series expansion which is truncated on the assumption of small surface
slope. The zeroth-order solution is just that which would be observed for a perfectly smooth
surface. The first-order solution, the most commonly discussed, provides a simple
expression for backscatter, but predicts no depolarization in the backscatter direction; this
deficiency is corrected in the second-order solution. The SPM has been used to study rough
surface scattering for surfaces with small height variation compared to the wavelength and
with slope smaller than unity. The SPM (or Bragg model) has also been adapted for use in
what is effectively a “two-scale” approach for use with polarimetric SAR data: discussion of
this methodology is left to a later section.

The Kirchhoff Approach (KA) and the Physical Optics Method (POM) use the “tangent plane
approximation” to represent the surface fields on a rough surface as those that would exist
on the tangent plane at that point. The local Fresnel reflection coefficients (which depend
upon the dielectric permittivity through the soil composition and water content) are used to
calculate the tangent fields. Given a surface correlation function it is possible to derive
tractable analytic expressions for backscatter in the KA. These are of limited validity
however, and the KA can only be used to study backscatter from surfaces with large radius
of curvature (relative to the wavelength of the incident radiation). For a full discussion of the
ranges of validity of the SPM and KA the reader is referred to Thorsos and Jackson (1991).
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The Geometrical Optics (GO) solution is a high-frequency asymptotic solution to the KA
diffraction integrals derived using the method of stationary phase (Tsang, Kong and Shin,
1985).

The use of integral equations in the study of surface scattering is by no means new (e.g.
Morse and Feshbach, 1953). The Integral Equation Method (IEM) of Fung and Chen (1992)
united both KA and SPM models in an attempt to extend their applicability over a wider
range of roughness conditions and frequencies. Although it contains a number of
approximations (Fung, 1994), the IEM demonstrates the capacity to describe backscattering
behaviour of a randomly rough bare surface over wide ranges of roughness and correlation
length for Gaussian and exponentially correlated surfaces, and takes both single and
multiple surface scattering into account through the use of tangential surface field estimates
that extend beyond the use of Fresnel reflection coefficients in the KA. The IEM has been
employed to model backscatter from multi-scale surfaces more representative of real rough
surfaces (Manninen, 1997), but the range of validity of the IEM in the multiscale formulation
is not yet clear.

Perhaps because of its wide range of validity the IEM has become arguably the most widely
used radar backscatter model and has been found to be particularly suitable for retrieving
soil moisture from single-wavelength, single-pass SAR measurements. However, in all such
cases, an a priori measure of surface roughness was required (e.g., Tansey and Millington,
2001).

Altese et al. (1996) used an approximate version of the IEM, valid for surfaces with small to
moderate roughness (Appendix A Table A.1). Only the single scattering component of the
IEM was considered and only the real part of the relative dielectric constant was used, with
the assumption that the surface correlation function is isotropic and could be represented
by either Gaussian or exponential models.

As a result of successful applications of the IEM to soil moisture retrieval, there have been
numerous refinements, improvements, and additions to the IEM that will certainly
encourage its continued use. To reduce the complexity of the IEM application, algorithms
have been developed based on fitting of IEM numerical simulations for a wide range of
surface roughness and soil moisture conditions (Chen et al., 1995; Shi et al., 1997). The
results are a look-up table of IEM simulations that serve to directly relate SAR surface
backscattering coefficient to theoretical model predictions over bare and sparsely vegetated
surfaces with known radar parameters. These simplified IEM-based algorithms require fewer
parameters and are much easier to use with remotely sensed data.

Another critical refinement of IEM was the incorporation of vegetation backscatter effects
into the soil moisture inversion algorithm. The original IEM was developed for bare soil
conditions only, although the retrieval algorithm performed well for sparsely vegetated
areas. Bindlish and Barros (2001) formulated an IEM vegetation scattering parameterization.
They reported that the application of the modified IEM led to an improvement in the
correlation coefficients between ground-measured and SAR-derived soil moisture estimates
from 0.84 to 0.95. The incorporation of vegetation scattering may expand IEM applications
to moderately vegetated sites and improve applications in arid and semiarid regions where
soil moisture is so low that the soil contribution may be equal to the magnitude of the
vegetation contribution.
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The IEM model has also been refined to include a penetration depth model (Boisvert et al.,
1997). Studies have reported problems in IEM-based soil moisture retrieval due to an
increase in the penetration depth of the incident wave when the soil moisture was low (e.g.,
Wiemann, 1998). As a result, modelled soil moisture could not be compared with ground
measurements because the IEM did not account for the fact that microwave penetration
exceeded the layer where the soil moisture was measured (Wiemann, 1998). Boisvert et al.
(1997) offered three approaches to refine the IEM to account for variations in beam
penetration depth. They reported that the correction allowed reliable comparisons among
different SAR configurations and took into account the daily variations in the beam
penetration with soil moisture.

Semi-empirical calibration of the IEM model has been proposed and applied to compensate
for the uncertainty in the effect of the correlation length on the backscatter. As correlation
length is not only the least accurate but also the most difficult to measure of the parameters
required in the model, it is proposed that it be replaced by a calibration parameter that
would be estimated empirically from experimental databases of radar images and field
measurements (Baghdadi et al., 2004)

The general consensus of studies using SAR measured backscattering coefficient with radar
backscatter models is that the retrieval of soil moisture with single-wavelength, single-
incidence, single-pass SAR data is not possible without information about the surface
roughness. The results also demonstrate the need for continuous measurement of surface
roughness and fine-resolution information about surface topography, if soil moisture is to be
monitored accurately with single-wavelength SAR data. When SAR data with consistent
ground truth information are available, it is possible to test the many existing retrieval
algorithms and select those that perform best with the available sensor data. This is an
approach to be recommended.

3.4. Bare Surfaces using Empirical Scattering Models

3.4.1.

3.4.2.

V01_00

The most widely published empirical models apply simple linear regression techniques to
SAR backscatter and observed soil moisture (Bernard et al., 1986; Bruckler et al., 1988;
Ragab, 1995). Bruckler et al. (1988) applied a simple second order regression equation:

c°dB=a.m,+b (Eq. 2)

where m, is the volumetric soil moisture and a and b are empirical regression coefficients
and o°dB is the backscattering coefficient in decibels. Dobson and Ulaby (1986) determined,
unsurprisingly perhaps, that the “a” and “b” coefficients were dependent on surface
roughness and soil “texture” respectively.

Some of the limitations inherent to empirical models include the requirement of a large
number of experimental observations for statistical robustness (Oh et al., 1992), validity
over a narrow range of imaging (frequency, incidence angle, polarization) and soil
(roughness and moisture) parameters (Walker, 1999), and poor extrapolation to areas
outside of those used in model development (Chen et al.,, 1995; Dubois et al., 1995b).
However Oh et al. (1992) suggest that empirical backscatter models have advantages over
theoretical models since many natural surfaces do not meet the validity requirements of the
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models, and those that do yield poor results against experimental observations.

3.4.3. In the 1990’s, more advanced empirical non-linear regression models were developed
(Appendix A Table A.2), including Oh’s model (Oh et al., 1992) and the Dubois-van Zyl model
(Dubois and van Zyl, 1994; Dubois et al., 1995a,b).

3.4.4. The empirical model developed by Oh et al. (1992) employed polarimetric backscatter
measurements acquired using a truck-mounted scatterometer (LCX POLARSCAT). Full
polarimetric data were collected at X-, C- and L-band frequencies over a 10 — 70° incidence
angle range, and for a variety of soil roughness and moisture conditions. The reference
ground data comprised measurements of RMS height, correlation length and dielectric
constant over a finite area.

3.4.5. The model was developed using the magnitudes of the measured data. Good agreement
between measured and modelled data was achieved within the ranges 0.1 < ks <6, 2.5 <kl <
20 and 0.09 £ mv £0.31, where k is the wave number, s is soil RMS height, | is soil correlation
length, and mv is the moisture content The model was inverted to predict RMS height and
moisture content from multi-polarized radar data

3.4.6. Dubois et al. (1995b) developed an empirical model for estimation of soil moisture and RMS
height using radar data also acquired by truck-mounted scatterometers (LCX POLARSCAT
and RASAM). The Dubois algorithm was optimised for bare soil surfaces and requires 2 co-
polarized measurements at a frequency between 1.5 and 11 GHz. Best results are obtained
under the conditions kh < 2.5, mv £ 0.35 vol/vol and 0 > 30° (incidence angle).

3.4.7. Excluding use of the HV backscatter in retrieval models has been shown to reduce the
sensitivity of the algorithm to cross-talk and system noise, simplify calibration, and increase
robustness when vegetation is present (Dubois et al., 1995b), although cross-talk is generally
lower than -20dB so this is not a significant issue. Since it is designed for bare soil surfaces,
the algorithm underestimates soil moisture and overestimates RMS height in the presence
of dense vegetation (NDVI > 0.4). A simple criterion based on the ¢°y/c°yy ratio is used to
identify areas where inversion of the model is not affected by vegetation. It is noted here
that the HV backscatter is now reintroduced into the algorithm as an aid to classifying land
cover, a theme that will be apparent in other work. Inversion accuracy was assessed using in
situ measurements and the scatterometer data, as well as SIR-C and AIRSAR data, and found
to be < 0.042 vol/vol soil moisture.

3.5. Bare Surfaces using Semi-Empirical Scattering Models

3.5.1. Semi-empirical backscatter models might be considered an improvement over empirical
backscatter models as they either i) originate from a theoretical model and use simulated or
experimental data to simplify the model, or ii) use simulated data from a theoretical model
to develop an empirical one that models backscatter response over a wider range of
conditions (Walker, 1999). Semi-empirical models tend not to incur the site-specific
limitations often found with empirical models. Model parameter details are provided in
Appendix A Table A.3.

3.5.2. Oh et al. (1994) developed a semi-empirical backscatter model based on available
theoretical models (SPM and KA) and extensive experimental observations collected from a
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truck-mounted multi-frequency (X-, C- and L-band), polarimetric scatterometer. Backscatter
measurements were obtained over a 20 — 70° incidence angle range, with 10° steps and
under a variety of soil moisture and roughness conditions. The model is an extension of their
previous empirical model (Oh et al., 1992) and includes the magnitude and phase of the
backscatter. The co-polarization ratio (o°yu/0°vw), cross-polarization ratio (o°4/0°w) and
degree of correlation for co-polarization phase difference were found to be most sensitive to
surface parameters.

Chen et al. (1995) developed a semi-empirical backscatter model based on the single
scattering terms of the IEM. The model is based on multiple linear regression of IEM
simulated data. The model proved a simple and successful tool for retrieving of bare soil
moisture with known radar parameters.

Another semi-empirical backscatter model based on the single-scattering IEM was
developed by Shi et al. (1997). The algorithm was applied to quad-polarized backscatter
measurements acquired at L-band by the AIRSAR and SIR-C instruments. Good agreement
was found between the single-scattering IEM simulations and L-band backscatter over a
wide range of soil moisture and roughness conditions (Shi et al., 1997). Co-polarized
backscatter and ratios showed the greatest sensitivity to soil moisture variation, as one
might expect, confirming the significance of the approach adopted by Dubois. Model
inversion of co-polarized AIRSAR and SIR-C backscatter measurements over bare and
sparsely vegetated fields resulted in soil moisture and surface roughness RMSE of
0.034vol/vol and 1.9dB respectively.

The algorithm is expected to not incur the same site-specific limitations typical of an
empirical model derived from a limited observation set, as the regression was based on a
large dataset simulated for a wide range of surface parameters and at fine intervals (Shi et
al., 1997). However, further testing of the algorithm at other sites with ground and SAR data
is required to assess its wider application. Further improvement of the algorithm would
require consideration of vegetation effects.

Moran et al. (2000) used the difference in wet and dry season ERS backscatter
measurements to normalize the effects of roughness and topography. Moran indicates that
the effects of non-dense vegetation (on the change signal) were found to be negligible for
identical sensor configurations and could be ignored (Dobson et al., 1992; Lin and Wood,
1993; Demircan et al., 1993; Dubois et al., 1995b; Chanzy et al. 1997). Moran also noted that
in many areas vegetation is too dense to be able to monitor soil moisture with only C-band
wavelength (Wever and Henkel, 1995; Wang et al., 1996).

Quesney et al. (2000) applied standard radar equations to estimate soil moisture content at
accuracies of +0.04-0.05 vol/vol using ERS measurements. Site selection was guided by an
existing vegetation classification and in situ measurements which helped identify low
biomass vegetation. First order radiative transfer modelling was used to correct the
backscatter response for the effect of vegetation. Sites were classified according to
roughness based on furrow direction as observed by the radar. Empirical relationships were
then derived between radar backscatter and in situ soil moisture for each class and applied
to all target sites in the ERS image. It was concluded that the same algorithm was applicable
to wheat fields throughout November to August, excluding May and June (Quesney et al.,
2000).
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It is noted that although radiative transfer modelling may be appropriate at C-band for low
biomass vegetation, radiative transfer models often contain inappropriate approximations
for extinction coefficients, and cannot be readily used to model backscatter when vegetation
structure is important. For such instances coherent backscatter modelling is more
appropriate.

3.6. Vegetated Surfaces

3.6.1.

3.6.2.

3.6.3.

3.6.4.

V01_00

In areas with denser vegetation, the vegetation component has to be taken into account by
the retrieval algorithm in order to obtain accurate estimates of soil moisture. Consequently,
the effect of vegetation volume scattering has to be quantified and removed from the total
backscatter in order to estimate the surface component, which used in subsequent steps for
the retrieval of the parameters of interest. Estimating the vegetation volume scattering
component also allows for a more accurate retrieval of the vegetation characteristics (e.g.,
biomass, height, etc.).

Simple empirical models have been developed based on the increase of the radar
backscattering coefficient with biomass according to observational data (Ulaby et al., 1986).
The model parameters are highly specific to a single plant structural type (i.e., monospecies
plant population) and sensor characteristics (frequency, polarization and incidence angle),
strongly limiting their application to large areas.

In theoretical models of radar scattering, the vegetation canopy is normally treated as a
uniform layer of some specified height containing a random distribution of scatterers
(Attema and Ulaby, 1978; Eom and Fung, 1984; Fung and Ulaby, 1978; Karam and Fung,
1988; Lang and Sidhu, 1983; Tsang and Kong, 1981; Tsang et al. 2000). The advantage of the
discrete approach is that the results are expressed in terms of quantities such as plant
geometry and orientation statistics that are easily related to the biophysical properties of
individual plants and can be measured objectively. This generally involves a large number of
structural parameters. Two major challenges are encountered when modelling the
backscatter behaviour of a vegetation canopy. The first relates to the difficulties in specifying
model parameters that adequately describe the canopy. The second relates to the
mathematical complexity in resolving the inverse problem due to the large number of
variables and parameters, which makes their inversion difficult (Lang and Sahel, 1985). This
is the motivation for the semi-empirical models.

The basic approach for semi-empirical modelling of the vegetation scattering is the Water
Cloud Model (WCM). Basic conceptual assumptions in the WCM approach include: i) the
vegetation is represented as a homogeneous horizontal cloud of identical water spheres,
uniformly distributed throughout the space defined by the soil surface and the vegetation
height; ii) multiple scattering between the canopy and the soil can be neglected; iii) the only
significant variables are the height of the canopy layer and the cloud density, with the latter
assumed to be proportional to the volumetric water content of the canopy. In this context,
the WCM represents the power backscattered by the whole canopy as the incoherent sum
of the contribution of the vegetation and the contribution of the underlying soil which is
attenuated by the vegetation layer.
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3.6.5. In WCM models, the canopy is represented by “bulk” variables such as leaf area index (LAI)
or total water content, and because of the parsimonious use of parameters, these models
can be easily inverted.

3.6.6. Once the model is parameterized it is possible to estimate the relative contributions of
vegetation and surface to the total backscatter and, subsequently, to retrieve soil moisture
from the surface component using bare surface models (Dubois et al. 1995; Fung et al. 1992;
Oh, 2004).

3.6.7. Most semi-empirical models used for soil moisture and/or vegetation parameters retrieval
(Bindlish and Barros 2001; Gherboudj et al., 2011; Santoro et al., 2002) are based on the
WCM. The models differ in the way the vegetation is parameterized, ranging from crop-
specific parameterization (Attema 1978; Gherboudj et al, 2011) to more general
relationships for a variety of vegetation types (Bindlish and Barros 2001).

3.6.8. The strong sensitivity of the WCM parameters to changes in canopy structure (i.e., land-
cover type) restricts a generalized approach. However, in principle, it should be possible to
develop a unique set of parameters for each class of vegetation (defined by its geometric
structure).

3.6.9. The WCM in its original form ignores multiple scattering within the vegetation layer and
scattering between the vegetation and soil is ignored. The reduced attenuation at low
frequencies (L-band) could increase soil-vegetation interaction for crops with significant
returns from stems (e.g., corn), in which case the soil-vegetation backscatter should be
accounted for.

3.7. PolSAR and PolInSAR Observations

3.7.1. The application of fully polarimetric SAR (PoISAR) and compact polarimetry for soil moisture
retrieval has also been investigated. Measurement of polarimetric parameters such as
coherence (y), entropy (H), and alpha angle (a) have been used to study the dependence of
the polarimetric signature on land cover changes and on surface parameters such as soil
moisture and surface roughness (Barrett et al. 2009). The key advantage of PolISAR is the
capacity to measure the full suite of polarimetric attributes pertaining to a target. While
previous spaceborne SARs have operated in a single fixed polarisation for both transmission
and reception (e.g., Radarsat-1, ERS-1 & 2), more recent SARs operate with dual (ENVISAT
ASAR) or fully (Radarsat-2, TerraSAR-X) polarimetric capabilities. This facilitates
measurement of a target’s scattering amplitudes in all combinations of the two linear
polarisations: Syy, Shy, Svi and Syy. Full measurement of the scattering matrix in any single
(e.g. linear) basis permits the construction of the scattering matrix in any polarization basis
and permits a full description of the target backscattering characteristics at the observation
frequency.

3.7.2. For monostatic observation Sy, = Syy for reciprocal scatters, and is a valid assumption for
most natural targets. Under reciprocity, the Sinclair/Jones scattering matrix (the set of four
scattering amplitudes) can then be expressed as a three-vector, the Pauli vector, and the
average of the outer product of this vector forms the 3 x 3 polarimetric coherency matrix.
For fully developed speckle the coherency matrix represents all the information required for
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a full description of the polarimetric clutter distribution for distributed targets, such as bare
soil surfaces or crop fields etc.

Polarimetric signatures can provide detailed information on different scattering
mechanisms. Compared to single-channel SAR, the benefits of improved data quality and
accuracy of results afforded by polarimetry are significant (Barrett et al. 2009). As with
single-channel SAR, the presence of vegetation is a significant inhibitor to accurate retrieval
of soil moisture, but multichannel polarimetric SAR data offer increased ability to both
detect and compensate for the effects of overlying vegetation on the observed signal (e.g.
Dubois use of HV for vegetation discrimination).

Compensation for vegetation effects has been tackled in two main approaches, including
target decomposition algorithms and polarimetric SAR interferometry (PolinSAR). Target
decomposition aims to deconstruct the backscattered signal into the various combinations
of scattering contributions within each resolution cell. A detailed review of available
decomposition algorithms is found in Cloude and Pottier (1996) and Lee et al. (2004). The
two most widely used decomposition theorems are the Freeman decomposition (Freeman
and Durden, 1998) and its variations, and the Cloude-Pottier or eigenvector decomposition
(Cloude and Pottier, 1996, 1997).

The Cloude-Pottier decomposition uses the diagonalisation of the coherency matrix (T) to
represent the backscattered signal as the sum of three scattering mechanisms. The first
component is attributed to surface scattering and the second and third components
represent contributions from secondary or multiple scattering terms (such as direct
vegetation and ground-vegetation scattering). Following decomposition, a number of
models can be applied to quantitatively estimate soil moisture and surface roughness using
the surface scattering term. The extended Bragg or X-Bragg model (Hajnsek, 2001) is an
extension of the Small Perturbation Model (SPM), which assumes reflection symmetry and
takes into account cross-polarisation and depolarisation effects. Good agreement between
inverted and ground measurements was demonstrated in Hajnsek et al. (2003b, 2009) using
the X-Bragg model. Several studies have also demonstrated the retrieval of surface
parameters from the derived entropy (H), anisotropy (A) and alpha angle (a) of the Cloude-
Pottier decomposition.

Anisotropy was found to be sensitive to surface roughness (Hajnsek et al., 2002; Cloude et
al., 2000), while the entropy and alpha angle parameters were effective in estimating
surface soil moisture (Allain et al. 2003). The utility of the entropy/alpha decomposition
model was extended by Cloude (2007) in a dual polarized version which expanded its use
beyond that of fully polarimetric data. In a simulation study it was demonstrated (Williams,
2008) that compact polarimetry can be combined with the X-Bragg model to retrieve soil
moisture and roughness values for bare soil surfaces that are in accordance with values
recovered through the use of full polarimetry.

The inclusion of polarimetric phase information in the form of complex correlation
coefficients has also demonstrated sensitivity to surface parameters. Mattia et al. (1997)
found a significant relationship between the circular polarisation coherence (ygr) and
surface roughness while minimising the impact of the dielectric constant. Similar results
were achieved by Hajnsek et al. (2003), Schuler et al. (2002) and Malhotra et al. (2003).
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Similarly, Hajnsek et al. (2002) found high correlation between the linear polarisation
coherence yuuswnn-vy) (Hajnsek, 2001) and surface roughness and its independence from
soil moisture content. Cloude and Corr (2002) applied polarimetric backscattering
coefficients and developed a new ratio for soil moisture estimation that is insensitive to
variations in surface roughness.

More recently, attempts have been made to exploit the characteristic polarimetric
signatures of different scattering mechanisms to aid retrieval of soil moisture from soils
under vegetation (Hajnsek et al., 2009). L-band PolISAR images permitted the decomposition
of the scattering signature into canonical scattering components and their quantification:
primarily into direct, volume and soil-vegetation terms. Simple canonical scattering models
were used to decompose the polarimetric signature into these components in a manner
similar to that used for forest discrimination. Five different decomposition approaches using
different models for the individual scattering contributions were investigated and validated,
with each vyielding a similar level of performance. The study indicated that the X-Bragg
model (Hajnsek et al., 2003) showed a clear performance advantage at L-band since it was
able to better model increased cross-polar return from agricultural fields, due to surface
scatter rather than volume scatter. The work also indicated that signatures were more
reliable for mature crops, and that soil moisture estimation was possible from both direct-
surface and surface-volume scattering components as theory suggests.

The combination of polarimetric SAR with SAR interferometry (PolInSAR) has potential to aid
soil moisture inversion below forests. In their study Cloude and Williams (2005a/b)
decomposed the polarimetric coherency into volume and surface (direct-ground and
ground-volume) terms, and indicate that for L-band observation of forests, the separation of
these terms using PolSAR alone can be unreliable. Using PolInSAR the surface-to-volume
scattering ratio may be estimated and related to soil moisture, since increasing the soil
moisture increases the surface reflectivity and enhances both direct-surface and surface-
volume scattering. The study showed, using robust forward modelling, that whilst the
polarimetric entropy and HH backscatter were insensitive to soil moisture changes below
forests, a new polarimetric parameter, the Negative Alpha Value, showed strong
dependence upon soil moisture. The technique was applied to L-band airborne SAR data,
with retrieved soil moisture values for forested areas found to be consistent with soil
moisture measurements from nearby open ground. The theory was expanded (Neumann et
al., 2010) and used with airborne L-band SAR data to recover forest parameters, but not soil
moisture. The technique has not been tested with satellite SAR data.

Quite recently, a simplified distorted-Born Approximation model for scattering of P-band
microwaves by forests was used to recover both forest biophysical parameters (RMS height
and biomass) and soil moisture (My-Linh Truong-Loi et al., 2012). The algorithm took into
account three significant low-frequency scattering components: volume, double-bounce and
surface, and the inversion process used the Levenberg-Marquardt non-linear least-squares
method to estimate the structural parameters. The results showed that the inversion
process had a root-mean-square error lower than 0.05 vol/vol for soil moisture, 24Mg/ha for
biomass and 0.49cm for roughness, considering a soil moisture of 0.4 vol/vol, roughness
equal to 3cm and biomass varying from 0 to 500Mg/ha with a mean of 161Mg/ha. This work
suggests that P-band observation may be suitable for retrieval of soil moisture.
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4. APPROACHES TO RADAR SOIL MOISTURE RETRIEVAL USING TEMPORAL ALGORITHMS

4.1. Change Detection Approaches

4.1.1. Change detection approaches rely on the assumption that extraneous surface properties,
including for example, soil texture, roughness and vegetation, exhibit gradual or limited
change over time, and so any change observed is assumed to originate from a change in soil
moisture (Engman, 1990; Engman and Chauhan 1995).

4.1.2. This approach affords high potential for operational monitoring of soil moisture using single-
wavelength/single-polarisation, repeat SAR observations (Engman, 1994). Multi-temporal
observations can be used to minimise the effect of vegetation and roughness and so
maximise the sensitivity of backscatter to changes in soil moisture (Moran et al., 2006).
Naturally many studies have attempted to exploit data from available SAR systems which in
the past has generally meant C-band, and in some cases L-band.

4.1.3. The main drawback of change detection approaches is that they provide relative soil
moisture change, in the form of an index of “wetness” between two extremes (wet and dry),
rather than an absolute soil moisture estimation in terms of volume of water per volume of
soil.

4.1.4. Wagner and Scipal (2000) used a multi-year time-series of ERS scatterometer images with a
spatial resolution of 50km to develop a library of backscatter behaviour for each pixel. The
behaviour of ¢° with incidence angle over time was used to determine roughness and
vegetation, and normalize ¢° to a reference incidence angle of 40°. Relative soil wetness is
then estimated by comparing o° to reference backscatter values for wet and dry soil
conditions.

4.1.5. Wickel et al. (2001) used 10 RADARSAT images acquired over 1 month to monitor changes in
soil moisture in fields of wheat stubble. All images were first corrected for variations in
incidence angle. Fields with significant temporal variation in roughness were then identified
and excluded. A multi-temporal regression of day-to-day differences in backscattering
coefficient and soil moisture was calculated, and achieved a strong correlation (r*= 0.89).

4.1.6. Lu and Meyer (2002) trialled a similar approach but incorporated both SAR intensity and
phase information to initially discriminate changes in soil moisture from changes in surface
roughness. Changes in soil moisture were detected ranging from 0.05 - 0.2 vol/vol.

4.2. Time-series Approaches

4.2.1. Time series approaches differ from change detection techniques in that they make use of
the temporal information to constrain the retrieval of a time series of absolute volumetric
soil moisture rather than a “wetness index”. This is done by selecting an opportune
observation window so that the other factors affecting the backscatter (roughness and
vegetation) can be considered constant, and either ignored all together or retrieved as a
constant value over the observation window, depending on the method.
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Balenzano et al. (2011) investigated the use of dense time-series C- and L-band SAR,
acquired by DLR's E-SAR airborne system to map temporal changes in soil moisture content
in cropland area. A soil moisture retrieval algorithm was proposed to transform temporal
series of backscatter ratios between subsequent days into soil moisture content values.
Under the simplifying assumption that the backscatter response is just due to ground
response attenuated by vegetation canopy (i.e., volume scattering was not dominant) and
that roughness surface is unchanged, it was found that the ratios between backscatter on
subsequent days was a simple and effective technique of decoupling vegetation and
roughness effects from changes in soil moisture.

The results demonstrate the capacity to retrieve soil moisture over the entire growing
season for crops that are relatively insensitive to volume scattering (winter wheat at C-band
or winter rape (canola) at L-band for example), with accuracies of 0.05-0.06 vol/vol. Under
these circumstances, systematic retrieval of soil moisture would first require a classification
step to identify crop classes whose backscatter is not dominated by volume scattering.
Extension of the method to multi-polarized data such as for the SMAP mission is currently
underway.

Kim et al. (2011) used time-series co-polarised (HH and VV) backscatter measurements to
retrieve soil moisture and roughness. The approach was based on inversion of a numerical
model (Maxwell Model in 3 Dimensions, NMM3D) for bare soil using a pre-computed lookup
table (LUT) of o° derived from numerical Maxwell model simulations. Surface roughness is
assumed constant over the time-series and so only one surface roughness RMS height
estimate is retrieved, highly reducing the number of retrieved variables and therefore
making use of temporal information to constrain the soil moisture retrieval. This approach is
the basis of the baseline radar algorithm implemented for the SMAP mission (see Section
6.4).

An RMS error of 0.044 vol/vol for soil moisture was achieved, with a correlation coefficient
of 0.89 between estimated and in situ data (Kim et al, 2011). The relative accuracy of
surface roughness estimates was found to be 10 — 30 % of in situ measurements.

Kim et al. (2011) indicated that application of the time-series method could be extended to
vegetated surfaces by including more dimensions in the look-up-table, such as vegetation
water content. Initial results show high accuracy estimates of soil moisture content, largely
attributed to inclusion of the time-series information which helps mitigate attenuation and
surface scattering from the vegetation layer.

Pierdicca et al. (2010) demonstrated the retrieval of soil moisture content over cropland
using multitemporal radar (AirSAR C-band) and optical (Landsat) images. The approach
corrects for incremental vegetation effects and incorporates multi-temporal data within an
inversion model based on the Bayesian maximum posterior probability estimator.

The vegetation correction models the variation of that part of the backscattering coefficient
due to soil properties as a linear function of the variations with respect to the first time step
of the measured backscatter and biomass (Pierdicca et al. 2010).

There was good correlation between measured and modelled soil moisture content
(correlation coefficient of 0.72, RMSE = 0.036 vol/vol). This presents a reasonable estimation
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given the presence of dense canopy cover. Model performance was improved using multi-
temporal data as opposed to a single radar acquisition (Pierdicca et al. 2010).

4.3. Principal Components Analysis

4.3.1.

4.3.2.

4.3.3.

4.3.4.

4.3.5.

4.3.6.

4.3.7.

4.3.8.
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Principal Components Analysis (PCA) is an established image transformation technique
whereby a highly correlated, multi-dimensional dataset is reduced and transformed to a
limited set of uncorrelated bands/variables. PCA linearly transforms the data into a new
coordinate system, with the axes placed orthogonal to each other (Verhoest et al., 1998). In
so doing, the useful components of the data are separated from the noise, and significant
spatial patterns in the data are enhanced (Barret et al., 2009). The first principal component
(PC) contains the largest percentage of the total variance, and hence highest information
content.

The PC method is entirely different from any other method described in that it does not
provide an absolute soil moisture or a soil wetness value, but rather a “saturation potential
index” based on an assumption of terrain-dominated soil moisture distribuion along a slope
(at steady-state). This might be a useful method for providing approximate, large scale soil
moisture wetness information long after rainfall events (where soil moisture patterns
“tends” to follow the terrain elevation). However it is currently of little value when high-
resolution soil moisture dynamics need to be monitored.

Verhoest et al. (1998) applied PCA to a winter time-series of 8 ERS-1/2 images acquired in
Belgium and found that soil moisture could be separated from other influential factors such
as topography and land cover. Effects due to local incidence angle (LIA), land cover and soil
moisture were isolated in the first 3 PCs.

The first PC (PC1) accounted for 76.6 % of the total variance, the second PC (PC2) 6.6 %, the
third PC (PC3) 5.9 %, and the remaining PCs < 4 %.

PC2 revealed a strong spatial structure, with the highest values clustered along the drainage
network (Figure 4.1). Comparison with a drainage map derived from a digital soil map of the
catchment revealed that poorly drained soils in the valley correspond well with areas of high
PC2 values (Verhoest et al., 1998). This suggested the radar was responding to soil moisture
as determined by the drainage characteristics of the basin.

PC1 correlated well with LIA derived from a catchment DEM, indicative of the influence of
topography on total variance. PC3 correlated well with Landsat derived land cover, indicative
of the influence of land cover and land use on the radar response.

Further research will require testing the robustness of the approach using non-winter
images and other test sites.

Kong and Dorling (2008) applied PCA to 12 multi-temporal ASAR wide swath images
acquired over a 2-year period (150m resolution) and demonstrated potential for routine
monitoring of soil moisture throughout the agricultural growing season and at different
levels of roughness and vegetation cover. ASAR VV polarization was selected due to greater
capacity for penetration of vegetation compared to HH. Of ASAR's imaging modes, the wide
swath mode presents the best compromise due to high temporal revisit capability (3-5 days)
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and extensive coverage (400 x 400 km).

PC1 contained the largest percentage of total variance (41.7 %). PC2 contained 14.7 % of the
total variance, and was found to be positively correlated with dry days and negatively
correlated with wet days. High PC2 values were located near watercourses with sandy soils,
and low PC2 values were found on up slopes with clay soils. The spatial patterns in the PCA
were consistent with soil moisture and rainfall-runoff dynamics in the catchment (Kong and
Dorling, 2008).

Figure 4.1 Relationship between PCA and soil moisture: a) Second PC image derived from ERS-1/2 data, and b)

Catchment drainage map (Verhoest et al., 1998).

4.4. Interferometric Techniques

4.4.1.

4.4.2.

4.4.3.

V01_00

Repeat pass interferometry (InSAR) was initially developed for topographic mapping
purposes. InSAR exploits the phase information of the signal to calculate the interferometric
coherence between 2 or more SAR images, providing complementary information to that
obtained in the amplitude (Barrett et al., 2009). The phase difference calculated from 2 SAR
images with slightly different imaging geometries can be used to generate a DEM of the
surface.

The application of InSAR to estimating the change in soil moisture has yielded some
promising results. Previous studies have demonstrated a correlation between
interferometric coherence and relative soil moisture (Borgeaud et al., 1996; Wegmidiller,
1997; Lu and Meyer, 2002; Zhang et al., 2008). The combination of coherence and amplitude
may improve the estimation of surface parameters (Ichoku et al., 1998).

Phase decorrelation of the signal occurs due to changes in viewing geometry (baseline) and
change in surface scattering between two image acquisitions (i.e., temporal change, Zebker
and Villasenor, 1992). Furthermore, both lab and field experiments have demonstrated that
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changes in soil moisture lead to decorrelation (Nesti et al., 1998; Luo et al., 2001; Srivastava
and Jayaraman, 2001). Temporal decorrelation is sensitive to the sensor wavelength, and so
temporal effects are greater at C-band than L-band (Zebker and Villasenor, 1992).

4.4.4, Hajnsek et al. (2002, 2003) used the decorrelation caused by the additive signal-to-noise
ratio (ySNR) in two single-pass interferometric images (thereby avoiding temporal
decorrelation) to extract surface parameters (soil moisture and surface roughness), and
found high sensitivity of interferometric coherence to soil moisture variations, particularly
for low roughness values.

4.45. Topographic variations and surface displacement also contribute to InSAR phase shifts. By
subtracting two interferograms, these two components can be separated out in the process
of Differential Interferometry (DInSAR). There are only few studies on the use of DInSAR for
estimation of soil moisture (Gabriel et al., 1989; Nolan et al., 2003a,b; Hajnsek and Prats,
2008).

4.4.6. The interferometric approach has the potential to detect line-of-sight surface height
variation on the order of millimetres. However, since a surface generally shrinks as it dries,
and the microwave penetration depth also increases, topographic phase changes can
potentially be confused with those due to soil moisture.

5. SUMMARY OF APPROACHES TO RADAR SOIL MOISTURE RETRIEVAL
5.1. Statistical Methods

5.1.1. These methods include approaches such as linear regression.
PROS: Simple; do not require a priori knowledge of surface conditions.

CONS: Require observation data to train the method; cannot be adapted to conditions
different than the training data.

5.2. Model Inversion Methods

5.2.1. These methods include approaches such as empirical, semi-empirical and theoretical
models.

PROS: Depends on parameters which can be related (more or less directly) to surface
physical properties.

CONS: Validity is restricted to the conditions used for model development. Models must be
validated against a wide range of field data. Choice of model requires terrain scattering
characterization.

5.3. Data Cube Methods

5.3.1. These methods include the computation of data cubes using highly complex numerical
models that cannot be easily inverted.
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PROS: Detailed simulation of scattering across a wide range of conditions can be included.

CONS: Numerical models are complex with many parameters and with high computational
burden, but the use of pre-computed data cubes reduces the burden. Models must be
validated against a wide range of field data.

5.4. Polarimetric Methods

5.4.1.

These methods include the use of data with multiple polarisations.

PROS: Requires no or limited a priori knowledge of surface conditions; can provide ancillary
estimates of surface parameters other than soil moisture (e.g., roughness). Provides
additional information for land cover scattering classification for inversion model choice,
permits separation of scattering mechanisms and isolation of surface backscattering
components, particularly when combined with interferometry, provides better separation of
the effects of surface roughness from soil moisture, even with dual (HH,VV) polarimetry,
provides observables sensitive to soil moisture and invariant to LOS rotation.

CONS: Requires proper radar cross-channel amplitude and phase calibration accuracy.

5.5. Interferometric Methods

5.5.1.

These methods include the use of interferometric analysis using two images observed from
slightly different vantage points, either from the same pass or from a repeat pass in a
different orbit.

PROS: Requires no or limited a priori knowledge of surface conditions; can provide ancillary
estimates of surface parameters other than soil moisture (e.g., roughness); is sensitive to
even weak ground scattering under vegetation cover.

CONS: Requires fine radar cross-channel amplitude and phase calibration accuracy when
used polarimetrically. Repeat coherence affected by temporal decorrelation e.g. changing
Faraday rotation between observations.

5.6. Change Detection Methods

5.6.1.

These methods typically include use of a long time sequence of observations for a single
polarisation combination to determine maximum and minimum values that represent the
wet and dry extremes. These are then used to interpolate intermediate values.

PROS: Require limited a priori knowledge of surface conditions.

CONS: Provides relative soil wetness rather than absolute soil moisture; requires stability of
surface conditions (i.e., scattering mechanism) during the observation period.

5.7. Time Series Methods

5.7.1.

V01_00

These methods include the use of fully polarimetric data across a sequence of dates, ideally
representing a variation in moisture conditions over a relatively short period of time.
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PROS: Any method capable of yielding a soil moisture estimate from a single observation can
be incorporated into a time-sequence method. Requires limited a priori knowledge of
surface conditions; can provide ancillary estimates of surface parameters other than soil
moisture (e.g., roughness).

CONS: Requires stability of surface conditions during the observation period if constant
roughness is to be assumed during the observation window, although this assumption is not
essential (see Section 7).

6. CURRENT METHODS PROPOSED FOR RADAR SOIL MOISTURE RETRIEVAL
6.1. SMAP Radar Soil Moisture Retrieval Algorithms

6.1.1. The SMAP mission is expected to provide a 3km spatial resolution soil moisture product
globally with a 3 day repeat. The SMAP satellite is currently carrying several optional soil
moisture algorithms for its radar products, according to its radar-only ATBD (L2_SM_A, Kim
et al,, 2012). It is not expected to make a final choice until some point after launch, when it
is had the opportunity to conduct some initial validation studies

Snap Shot Retrieval

6.1.2. The SMAP radar has three L-band measurement channels (HH, VV, HV) from which soil
moisture can be estimated using a single acquisition. The estimation of soil moisture is an
inversion of forward models facilitated by the data cubes. The estimation is challenging,
because there are many parameters in the forward models that are unknown (or uncertain)
a priori (e.g., s, €, | and VWC), and must therefore be estimated as part of the retrieval, or
be provided through ancillary data.

6.1.3. SMAP researchers believe that soil moisture retrievals are insensitive to errors in knowledge
of the correlation length over a wide range of soil moisture, roughness, and correlation
lengths (Kim et al. 2012b). An exponential correlation function that describes empirical
measurements (Mattia et al. 1997; Shi et al. 1997) has been chosen, and is not considered as
an unknown during the retrieval.

6.1.4. With three measurement channels, the largest number of free parameters that can be
estimated is three. For SMAP, the three parameters chosen are dielectric constant
(equivalently, soil moisture), soil surface roughness height, and vegetation water content.

6.1.5. The impact of vegetation structure is accounted for by development of separate models for
different land cover classes: evergreen, deciduous broadleaf, and needle forests; mixed
forests; closed and open shrub lands; woody savannahs; savannahs; grasslands; wheat/rice;
corn/soybean croplands; cropland/natural vegetation mosaics; and barren or sparsely
vegetated areas.

6.1.6. The complexity of the non-linear forward models precludes a closed-form analytical
solution. Direct numerical inversion of a complicated forward model is also not feasible for
global soil moisture retrieval at 3 km resolution. However, a lookup table representation of a
complicated forward model was demonstrated to be an accurate and fast approach for
retrieval (Kim et al. 2012b). Because the SMAP radar has three measurement channels, and
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three primary retrievables (dielectric constant, surface roughness, and vegetation water
content), the forward models can be pre-computed for a given land surface class, for
discrete values covering the full range of the three parameters, and represented as a “data
cube” (Kim et al. 2012a; van Zyl 2011). Merits of the data cube search are summarized
below:

e avoid numerical or analytical inversion that is often not feasible for a sophisticated
forward model (Moghaddam et al. 2000);

e achieve the same inversion accuracy as the numerical or analytical inversion by
adopting a fine interval for the data cube axis, as demonstrated in van Zyl (2011);

e conveniently replace and update a forward model while retaining the same
retrieval formulae.

One vegetation axis represents the vegetation structure and dielectric properties by an
allometric equation relating volume to weight of the vegetation. The representation of
vegetation effects is clearly a simplification, considering that numerous vegetation
parameters produce different backscatter coefficients. However, the axis dimension cannot
be too large, and for “snapshot” retrieval options the dimension cannot exceed the number
of independent observations. This simplification will result in errors in the soil moisture
retrieval.

Only the real part of the complex relative permittivity is used, to keep the number of
unknowns to 3. It is assumed that the imaginary part of the dielectric constant can be
directly related to the real part for specific soil texture information. The results remain
dependent on both real and imaginary parts of the permittivity, particularly for cases when
the real part of the soil dielectric constant is less than 5.

The data cube for the grass surface, developed by the Univ. Washington, is shown as an
example in Figure 6.1. The data cube has the NMM3D simulation for the surface backscatter
and the Body of Revolution model for vegetated contributions.

SE
= -15

-25
-35

Er

VWC

Figure 6.1 Data cubes of o, (backscattering coefficient) for a grassy surface (units dB m?*/m?). The ks axis ranges
from 0.03 to 1.1, the real part of permittivity axis from 3 to 30, and the vegetation water content (VWC) from 0

to 3kg/m’.

6.1.10. The snapshot retrieval over the pasture surface was found to be poor, showing a retrieval

V01_00

error of 0.105 vol/vol, which indicates that effects of the overlying vegetation have not been
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properly compensated. The evaluation results suggest the limited applicability of the
snapshot retrieval.

The SMAP algorithm research team report that a new algorithm to estimate bare surface soil
moisture using dual-polarization L-band backscattering measurements, proposed in Sun et
al. (2009), is being adapted for snapshot retrieval over vegetated surfaces. This algorithm
uses a semi-empirical model to describe the backscattering coefficients as a product of two
functions: a dielectric function that reflects the soil moisture information approximated by
the polarization magnitudes as described by the Small Perturbation Model at L-band, and a
roughness function that describes the overall effects of the surface roughness at the
different polarizations. The relationship between the HH and VV surface roughness
parameters is required for the algorithm to be of use. Estimates of the HH VV surface
roughness parameter have been obtained using AIEM forward modelling for a wide range of
soil moisture and surface roughness conditions.

Initial versions of all of the 16 data cubes are currently available, but with limited validation
using existing in situ observations. Because “forward model” error is a key concern for SMAP
radar soil moisture retrievals, validation of the data cubes will continue throughout the
calibration validation period.

The backscatter coefficients of data cubes do not include the “Kp” noise; multiplicative
Gaussian random noise with a magnitude of 0.9 dB (1-sigma) is anticipated that includes
speckle (0.7dB), relative calibration error (0.35dB), and contamination from radio frequency
interference (0.4dB). Application of the noise-free data cubes to the noisy SMAP data will
result in retrieval errors and the errors are included in the retrieval error budget.

Time-series Retrieval

6.1.14.

6.1.15.

6.1.16.

6.1.17.

6.1.18.

V01_00

The SMAP baseline approach (Kim et al. 2012a,b) is a multichannel time-series retrieval
algorithm that searches for a soil moisture solution such that the difference between
computed and observed backscatter is minimized in the least squares sense.

The algorithm retrieves s, and then the real part of dielectric constant (g,), using a time
series of N co-polar backscatter measurements. There are thus 2N independent input
observations and N+1 unknowns, consisting of N g, values and one s value (since s is
presumed not to change over the period of the 2N observations). The VWC is permitted to
vary throughout the time series.

The least-square minimization of the cost function is implemented using forward model
lookup tables or “data cubes”, which are interpolated values of forward model outputs for a
wide range of soil moisture, RMS height and VWC values.

Vegetation effects are included by selecting the forward model’s 6° at the VWC level given
by an ancillary source, or using the SMAP radar HV measurements.

Another change detection approach is also under development (Kim and van Zyl, 2009).
After the SMAP radar data are accumulated for a moderate time period, nominally six
months, an expression will be derived to relate the backscattering cross section to soil
moisture. This expression will depend on the biomass level, and the cross-polarization will
be used to compensate the biomass variation over time: how this will be implemented is
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being studied.

Hajnsek (2009) and Neumann (2010) have already indicated how to isolate volume
scattering from fully polarimetric L-band data. Woodhouse (2010) has used the PolInSAR
ground-to-volume scattering ratio to estimate biomass, and My-Linh Truong-Loi (2012) has
demonstrated recovery of soil moisture and forest parameters using a model-based
approach with L-band quad-pol data. It is likely that these approaches will also be tested.

In addition to the use of time-series observations coupled with large-scale forward
modelling exercises and field testing, the SMAP algorithm developers are also considering
use of the change detection method employed for ASCAT data (Wagner et al. 1999a/b/c;
Wagner and Scipal, 2000; Wagner et al., 2003).

The proposed time series SMAP soil moisture retrieval algorithm flow (L2_SM_A, Kim et al.,
2012) is presented in Figure 6.2.

The portion of the flowchart through the land surface classification is the initial processing
done as a precursor to the actual retrievals. The L2_SM_A processor reads in 1km resolution
o° from the SMAP L1C_S0. The 1km data in natural units are aggregated onto the km EASE
grid, during which various quality flags are applied. Three quality flags are derived using the
3 km o°: freeze-thaw state (see L3_FT_A ATBD), radar vegetation index, and transient water
body. Static and dynamic ancillary data are sampled for each pixel of the L2_SM_A product.
The o° values from the past time are sampled and used by the time-series algorithm. For
each 3 km pixel, land cover class information is obtained from the mostly annual ancillary
data. The land cover information allows the choice of an appropriate data cube for each
pixel. The retrieval over the different land cover classes is spatially assembled to create a
half-orbit output, followed by the conversion from the dielectric constant to soil moisture.

Algorithm Evaluation

6.1.23.

6.1.24.

6.1.25.

V01_00

Preliminary field tests have used two data sets. The first test data were measured by a
truck-mounted scatterometer at 1.25GHz and 40° incidence angle over four bare surface
sites during a two-month period, with up to 11 temporal samples per site (Oh et al. 2002).
The second test data were collected by the airborne Passive/Active L-band Sensor (PALS)
instrument at 1.26GHz at the incidence angle centred at 38° during the 1999 Southern Great
Plains (SGP99) experiment over the Little Washita Watershed near Chickasha, Oklahoma
(Jackson and Hsu 2001; Njoku et al. 2002).

The snapshot retrieval algorithm was tested with the two sets of field campaign data and
showed that the bare surface retrieval had an RMSE of 0.055 vol/vol. It was also found that
the retrieval error increased for larger soil moisture.

The time series interpolation tables or “data cubes” generated for SMAP have also been
tested against field observations in order to provide estimates of accuracy for subsequent
soil moisture retrievals.
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Figure 6.2 Proposed SMAP soil moisture retrieval algorithm L2_SM_A (Kim et al., Algorithm Theoretical Basis

6.1.26.

6.1.27.

6.1.28.
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Document SMAP L2 & L3 Radar Soil Moisture (Active) Data Products).

The VWC varied from site to site between 0.16 and 2.5kg/m”. Temporally the roughness,
correlation length and VWC remained constant throughout the test periods. The bare
surface retrieval has an RMSE of 0.044 vol/vol after compiling the retrievals over the 4 in situ
locations. The time-series retrieval over the pasture surface has an RMSE of 0.054 vol/vol.
The slightly larger error for the pasture surface may reflect the effect of vegetation.

For each field of the 1999 Southern Great Plains (SGP99) experiment, a constant offset in
terms of dB was estimated to minimize the difference between observed backscatter and
predicted backscatter using the time series of co-pol backscatter observations. The SMAP
research team considered this to be associated with a bias in the data cube predictions
associated with the vegetation scatterer density. The existence of this bias is of some
concern as it might suggest a systematic error in the forward modelling process.

That new soil moisture algorithms for general or global retrievals are still under
development at this stage speaks loudly to the difficulty of designing a single algorithm to
work for a wide range of natural soil conditions.
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6.2. Sentinel-1 Soil Wetness Retrieval Algorithms

6.2.1.

The Sentinel-1 mission is expected to provide a 1km spatial resolution soil wetness product
globally with a 6 day repeat. A number of institutes worldwide are engaged in algorithm
development, which has focussed on adaption of the TU Wien change detection method
that has been applied to ASAR (Hornacek et al., 2012a).

Change Detection Retrieval

6.2.2.

6.2.3.

6.2.4.

6.2.5.

6.2.6.

6.2.7.

6.2.8.

6.2.9.

V01_00

The improved temporal and radiometric resolution (0.05 - 0.07dB when aggregated to 1km)
and Interferometric Wide Swath (IWS) imaging mode afforded by Sentinel-1 are key to the
potential for global monitoring of surface soil wetness.

The TU Wien method to be used was originally developed for ERS scatterometer data, and
later adapted to MetOp ASCAT and ENVISAT ASAR data (Hornacek et al. 2012b). The basic
idea behind the change detection algorithm is to attribute natural surface backscatter
changes over short timescales mainly to variations in soil moisture, while assuming that
vegetation or surface roughness are assumed to be constant or only slowly varying (Kim and
Van Zyl, 2009).

The algorithm is as follows:

oo(mv;t) = 0'odry(echar) + Sms(t) (ECI 3)

where o°(m,,t) are backscatter measurements in dB, o°4y(my char) is the dry reference
backscatter at characteristic local incidence angles, and mg(t) is the surface soil moisture at
time t.

Surface soil water saturation is thus retrieved by:

ms(t) = [00( mwt) - 0-odry(rnv char) ]/ S (Eq 4)

The sensitivity S to changes in surface soil moisture is estimated by the observed dynamic
range O°wetllMy char) - O°ary(My char) Of backscatter measurements at the location under
consideration, where 6°e(mMy char) is the wet reference at By,

The respective references with respect to characteristic incidence angle could be obtained
and stored per gridpoint of a global grid at 1km resolution (Hornacek et al., 2012). HH
polarisation is preferred due to greater penetration of vertically oriented vegetation (e.g.,
grasses and crops).

Retrieval error is determined by the noise of the IWS mode and uncertainties in model
parameters.

The proposed near real time soil wetness processor (S2M-NRT) is illustrated in Figure 6.3.
Requisite pre-computed model parameters corresponding to the input 1 minute DEM-
geocoded IWS mode ground-range multi-look detected (GRD) slice at 1km resolution are
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identified. Requisite model parameter tiles are mosaicked and resampled to the grid of the
input geocoded slice. Using the input backscatter and reference measurements, surface soil
water saturation is computed for every pixel of the input slice.

A binary mask (flag image) is also generated as an indication of the reliability of the soil
wetness product. Certain land cover classes are flagged as they are not suited to retrieval.
These include urban, evergreen broadleaf forest, water bodies, barren or sparsely
vegetated, snow or ice. Pixels are also masked if temporal correlation between DEM-
geocoded backscatter at 1km and aggregated coarser scale measurements (25km) lies below
a defined threshold.

The Institute of Photogrammetry and Remote Sensing (IPF), TU Vienna, has, through the ESA
DUE TIGER SHARE project, developed operational processing chains for deriving 1km
resolution soil wetness products using ENVISAT ASAR ScanSAR data. The method is similar to
that described above for use in Sentinel-1 using HH polarisation data (Pathe et al., 2009).
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Figure 6.3 Processing chain of the proposed NRT soil wetness processor (S2M-NRT; Hornacek et al., 2012).
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The model is quite simple in that all model parameters are derived directly from the ASAR
time-series for each pixel (Wagner et al., 2009).

Demonstration of the method over a 181,182km? area (697 ASAR GM images) in Oklahoma
revealed that the retrieval error was dominated by the high noise level of the ASAR GM
backscatter measurements (1.2dB). Comparison against 1km aircraft data showed almost
no skill at less than 10km spatial resolution (Mladenova et al., 2011).

The improved spatial, temporal and radiometric resolution of Sentinel-1 IW mode and
addition of cross-polarised channels (HV or VH) should make for a straightforward transfer
of the ASAR GM change detection method to Sentinel-1, with some improvements (Wagner
et al.,, 2009).

Doubkova et al. (2012) evaluated the ASAR GM soil wetness error product using
independent soil wetness estimates derived by the grid-based landscape hydrological model
(AWRA-L), part of the Australian Water Resources Assessment system (AWRA). Predicted
and computed RMSE showed a high level of spatial and quantitative agreement. The RMSE
was predicted within accuracy of 0.04 vol/vol of saturated soil moisture over 89% of the
Australian continent (Doubkova et al., 2012). The error estimates promote confidence in the
retrieval error model and derived error estimates.

Given the similar configuration of ASAR GM and Sentinel-1, it would appear that a similar
retrieval error estimation method can be applied (Doubkova et al., 2012). With the improved
radiometric resolution of Sentinel-1, soil moisture estimation errors are likely to be an order
of magnitude less than ASAR GM however.

Time-Series Retrievals

6.2.17.

6.2.18.

6.2.19.

6.2.20.

V01_00

Balenzano et al. (2012) applied the "Soil MOisture retrieval from multi-temporal SAR data"
(SMOSAR) algorithm to dense time-series ASAR data acquired over study sites in Germany
and ltaly. SMOSAR was developed within the framework of the ESA GMES Sentinel-1 soil
moisture algorithm development project.

The SMOSAR algorithm demonstrates the capacity to monitor soil moisture in agricultural
landscapes throughout the growing season for crops not dominated by volume scattering.
This is achieved through inversion of temporal changes of radar backscatter, rather than
absolute backscatter values (Balenzano et al., 2012).

Given a dense time-series of SAR data (revisit time of 6-12 days), the SMOSAR algorithm is
applied under the assumption that the backscatter change between two acquisitions is
largely related to the change in soil moisture, rather than a temporal change in vegetation
biomass or surface roughness (typically incurred over a few weeks).

The prototype processing chain for SMOSAR is shown in Figure 6.4. Dense time-series single
or dual polarised C-band SAR images are transformed into time-series soil moisture maps
over agricultural sites. Ancillary land cover and soil textural information are required. Overall
accuracy, and accuracy as a function of spatial resolution, polarisation and site location, are
computed.
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Figure 6.4 Prototype SMOSAR processing chain (Balenzano et al., 2012).

6.2.21. Soil moisture can be retrieved with an accuracy of 0.05 vol/vol at HH polarisation. The
results support the future use of time-series Sentinel-1 data for soil moisture estimation at
high spatial resolution.

Artificial Neural Network and Bayesian Retrievals

6.2.22. Paloscia et al. (2012) proposed two approaches to soil moisture retrieval in light of future
Sentinel-1 acquisitions and near real time processing. The first approach was based on
Artificial Neural Network (ANN) retrieval from sing acquisitions, and represented the best
compromise between retrieval accuracy and processing time. The second approach was
based on Bayesian Maximum Probability (MAP) using multi-temporal processing, which
allowed for increased retrieval accuracy at the cost of processing time.

6.2.23. The ANN comprised a feed-forward multilayer perceptron with two hidden layers. Archive
bare soil backscatter and ground measurements available from previous experiments, and
data simulated using the IEM and Oh models were used to train the ANN. Input parameters
included randomly variable incidence angle (20-50°), standard deviation of soil height (1-
3cm), correlation length (4-8cm) and dielectric constant (5-45). Around 10,000 iterations
were run to produce a set of backscattering coefficients for each soil parameter set.

6.2.24. Vegetation effects were taken into account by simulating the backscatter as a function of
soil backscatter and the VWC using the Water Cloud Model. VWC was related to NDVI using
a semi-empirical relationship. The model was iterated 10,000 times to obtain a set of
backscattering coefficients for each soil and vegetation parameter set. This dataset was used
to train a new ANN. An RMSE of 0.0093 vol/vol was obtained for HH polarisation. Worse
results were obtained using VV polarisation, with an RMSE of up to 0.029 vol/vol.
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In the case of dual polarisation images, and in the absence of NDVI, the ratio between cross-
and co-polarised backscattering coefficients (polarisation ratio, PR) showed good sensitivity
to vegetation. Re-training the ANN resulted in an RMSE of 0.013 vol/vol for retrieved soil
moisture.

Using the Bayesian approach, time-series radar data was integrated with the retrieval
algorithm based on Bayesian Maximum Posterior Probability (MAP) statistical criterion
(Paloscia et al., 2012). A quality index was computed for each soil moisture estimate in the
process. A simulation was run comprising input time-series backscatter measurements of
bare soil derived from Oh's model, randomly variable soil moisture and speckle noise
derived from multi-looking. Both RMSE and R® were significantly improved using a time-
series of around 4 - 6 images.

Pierdicca and Pulvirenti (2012) outline an operational system for implementation of the
multi-temporal MAP algorithm, as illustrated in Figure 6.5.
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Figure 6.5 Processing chain for multi-temporal MAP algorithm (Pierdicca and Pulvirenti, 2012).

6.3. SAOCOM Soil Moisture Retrieval Algorithms

6.3.1.

6.3.2.

6.3.3.

V01_00

The SAOCOM mission is expected to provide a 700m spatial resolution soil moisture product
for select regions on an operational basis with a 6 day repeat. However, little detail is
available on the SAOCOM retrieval algorithm, and there are no ATBD’s in the public domain.

The contributions to backscattering coefficient from soil permittivity, surface roughness and
vegetation cover at specific incidence angles and wavelength (L-band) will be developed
from field experiments over the Pampa’s region. Simulations will be performed using the
Peplinsky-Dobson and Topp’s dielectric models (Frulla et al., 2011).

Similarly to SMAP, numerical forward models will be used in the simulations to generate
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data cubes for each vegetation type. The more robust algorithms are expected to be those
that use co- (HH and VV) and cross-polarized (HV) backscattering coefficients. For bare soil
or low vegetated surfaces the data cubes flatten to planes (Frulla et al., 2011). In such cases
SAOCOM analysis will apparently use only the backscattering coefficient from the two co-
polar inputs, although there are good arguments for using cross-polar returns, since co-polar
ratios are terrain-orientation dependent, whereas coherency matrix element ratios are line-
of-sight rotation independent (Hajnsek et al., 2003; Williams, 2008; Lee et al., 2000). The
proposed architectural design of the SAOCOM soil moisture processor is presented in Figure
6.6 (Frulla et al., 2011).
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Figure 6.6 Architectural design of SAOCOM soil moisture product retrieval (Frulla et al., 2011).

7. RADAR SOIL MOISTURE RETRIEVAL ALGORITHM RECOMMENDATION
7.1. Overview

7.1.1. For soil moisture retrieval, microwave remote sensors are clearly preferred over optical and
thermal sensors, as they are largely unaffected by cloud cover, haze, rainfall, and aerosols,
and respond to the soil properties even in the presence of vegetation, rather than simply
vegetation colour or temperature.

7.1.2. In order to achieve spatial resolutions better than 10’s km, radar rather than radiometer
approaches are required. However, radar is more affected by soil roughness and vegetation
than radiometers, typically resulting in a lower accuracy for derived soil moisture content.

7.1.3. The higher spatial resolution of radar as compared to radiometers yields challenges to
achieve high temporal repeats from a single satellite. The use of multiple satellites results to
achieve temporal repeat requirements can result in calibration challenges, especially for
time-series and change detection approaches, where high relative calibration accuracies
between the multiple sensors is required.
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A major limiting factor in the quantitative estimation of soil moisture is separation of the
individual scattering effects from surface roughness and vegetation. Moreover, the return
signal is not only a function of the physical and electrical properties of the target, but also of
the wavelength, polarisation and incidence angle of the radar sensor.

Several general conclusions can be drawn from the preceding review.

7.2. General Observations

7.2.1.

7.2.2.

7.2.3.

7.2.4.

V01_00

Forward modelling has a role to play in soil moisture retrieval algorithm development, but
only when supported by field campaigns. Of the tractable approximate theoretical models
available, the IEM offers the widest range of validity and can be used to help generate a
database of backscattering coefficients characterised by surface roughness and soil moisture
values. Numerical surface scattering calculations have an additional role to play in this
regard. Models must properly account for the true multi-scale nature of i) natural surfaces
and ii) artificial surfaces such as ploughed fields. The models must also account for both the
attenuation due to vegetation and the scattering by vegetation over a wide range of
frequencies.

If radar is to be used on an operational scale for soil moisture mapping, then soil roughness
parameterization through in situ measurement is not an option. This can be circumvented
using techniques that either i) do not require information on surface roughness (e.g., change
detection techniques), or ii) characterize the surface roughness (e.g., time-series techniques,
polarimetry, multi-angle viewing, laser scanning).

Frequency choice is important, and high frequencies (C-band, X-band or higher) are not
appropriate for direct retrieval of soil moisture (although they may have a partial role in land
cover discrimination in a retrieval algorithm) since the backscatter at these frequencies
shows significant dependence upon surface roughness and is strongly influenced by
vegetation. At lower frequencies (L-band and perhaps S-band, although little experimental
evidence is available for S-band), the surface roughness effects on backscattering decouple
from soil moisture effects, and the impact of vegetation on the signal decreases, making soil
moisture retrieval more reliable. At even lower frequencies (P-band and lower), surface
backscattering coefficients decrease and RFI become more prevalent. This reduces signal to
noise, and impedes biophysical parameter recovery. Furthermore, for space-based
observation, the effects of Faraday rotation are increasingly important at lower frequencies,
and this introduces another source of error into soil moisture retrieval algorithms. However,
for heavily vegetated areas, for example below dense forests, P-band may offer the only
option for soil moisture retrieval. For moderately vegetated areas L-band is most
appropriate.

Multichannel data yield better results than single channel observations. If only single
channel polarization data are available then HH may be preferred as it appears more
sensitive to soil moisture. However, with only a single polarization channel it is not possible
to separate the effects of soil moisture and roughness without multi-temporal observations,
and only then with the assumption of constant soil roughness. At minimum one would
anticipate measurement of both HH and VV linear polarization scattering amplitudes. A
system designed for dual co-polar operation, that can transmit and receive in both H and V
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polarizations, is inherently capable of fully polarimetric (FP) operation (although there may
be associated design costs for FP). Full polarimetric operation is required for polarimetric
calibration even if only the co-polar channels are to be used in soil moisture retrieval.
However quad polarization (FP) operation is recommended over dual co-polar operation as
it permits better soil/vegetation discrimination and correction for terrain slope effects.
Measurement of the full complex scattering matrix in any polarization basis permits
synthesis of the scattering matrix in all polarization bases and makes accessible algorithms
that use (for example) linear polarization scattering amplitudes from measurements of (say)
circular scattering amplitudes. If fully polarimetric operation represents too high a cost, then
hybrid “compact” polarimetric modes (in particular transmit circular, receive linear H and V)
offer an advantage over traditional dual polarimetric systems which record a co-polar and
cross-polar return, which latter is low for rough surfaces.

Terrain effects have received little attention in the literature, yet it is clearly understood that
terrain slope alters, and mixes, the scattering amplitudes (Lee et al., 2000). If fully
polarimetric data are used to recover Line of Sight (LOS) rotation independent quantities,
such as polarimetric coherency matrix eigenvalues, and soil moisture content retrieval is
based on these, then terrain slope effects can be safely ignored. However, if only co-polar
channels are to be employed then terrain slope must be accounted, in addition to local
incidence angle, which is itself LOS rotation independent. How this may best be achieved
without measuring the response in the full polarimetric basis would be the subject of
additional research.

Multi-temporal data lead to improvements in the performance of soil moisture retrieval
algorithms over that observed with single acquisition data. Repeat observation intervals on
the order of 2-3 days or less are desirable. Whilst multi-temporal, single polarization channel
data may permit change detection of soil moisture content, this is only possible with some
underlying assumption regarding soil roughness stability. In general, multi-temporal data
incur variation in local incidence angle at the pixel level. Corrections for incidence angle
effects are indicated for multi-temporal data, and such corrections are best achieved with
multi-channel polarimetry.

The inversion of soil moisture content from multichannel and multi-temporal signals can be
achieved through the use of trained neural networks or look-up tables constructed with a
combination of forward modelling and observation. In order to use these approaches the
land cover must first be categorised into classes wherein the scattering effects of overlying
vegetation can be quantified and corrected, at wavelengths for which the effects of
vegetation are not severe. Data cube construction and/or neural network training must be
done for each of the classes, and the forward and/or numerical models used must be of high
fidelity, capable of accurately predicting the effects of combined soil surfaces and a wide
variety of vegetation, under different conditions, imaged at different frequencies,
polarizations, resolutions and incidence angles.

Scale is still an issue using radar, which at low resolution can compound the effects of multi-
scale processes, e.g., topography, surface roughness and soil moisture variations and
vegetation effects at different spatial resolutions. It is difficult to characterise surface
roughness at “field” scales because of spatial variations/spatial heterogeneity of soil
parameters, in addition to the fact that soil surface characteristics may be non-stationary or
self-similar, thus presenting a limitation to bio-physical parameter retrieval using satellite
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imagery. At large scales or low resolutions, pixel values are averages and local surface
roughness and soil moisture variability are obscured, which is limiting for hydrological
applications. Further studies are needed on the application of filtering and averaging
techniques to address the scale issue.

Active microwave remote sensing with SAR is capable of providing much finer resolution
than passive microwave remote sensing. However passive microwave measurements are not
redundant, and can be used to i) constrain soil moisture content retrievals based on active
measurements, and ii) provide estimates of the Faraday rotation angle to correct fully
polarimetric SAR measurements at lower (L-band and below) frequencies. Although total
electron content (TEC) estimates, and hence Faraday rotation estimates, are available from
different sources, correction of the effects of Faraday rotation is only possible (without the
need for additional targets) if the complete scattering matrix is measured. Compact
polarimetric modes, in particular transmit single circular and receive dual linear modes, are
attractive since they imply enhanced swath coverage and reduced power requirements.
Estimation and correction of Faraday rotation for compact polarimetric SAR appears
possible, but requires three different target types and orientations, and places strict
requirements on the transmit channel imbalance which cannot be corrected after
transmission.

Based on the preceding literature review and case studies, and the general observations
listed above, the following recommendations for a soil moisture retrieval algorithm are
made.

7.3. Algorithm Recommendations

7.3.1.

7.3.2.

7.3.3.

7.3.4.

7.3.5.
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A combination of fully-polarimetic, passive and active microwave remote sensing is
recommended: with synthetic aperture radar operating at S-band to L-band for bare soil
surfaces, at L-band for moderately vegetated areas, and between L-band and P-band for
forests. Bandwidth and other SAR system design considerations are the subject of Section 8.
If constraints prohibit the use of fully polarimetric data then compact polarimetric operation
should be considered with circular transmit and linear receive combinations.

The algorithms should closely follow those proposed for SMAP and SAOCOM missions, and
combine multi-temporal observations at intervals of 2-3 days in order to properly sample
the dynamics of soil moisture variation.

The channel backscatter complex amplitudes should be measured and if required adjusted
for terrain slope either estimated through polarimetry, or using the best available DEM and
knowledge of the imaging geometry.

The SAR instrument requires careful calibration. The data calibrations, radiometric and
polarimetric, should be validated using external targets and monitored regularly. Faraday
rotation should be estimated for each observation and correction made for this in the
scattering (and emission) amplitudes.

The measured scattering amplitudes should be converted to backscattering coefficients
using the best available DEM. These in turn should be subject to terrain illumination
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correction, which should in addition generate a local incidence angle layer. Polarimetric
coherency matrices should be estimated from single look complex data along with the
backscattering coefficients, as soil moisture retrieval will use these where available. The
information derived from decomposition of the coherency matrix could be used in several
ways: i) un-supervised classification of land surface scattering mechanism for each pixel, for
pre-classification of land cover and categorization of retrieval cases (e.g., agricultural land,
urban areas, water bodies); ii) aid the selection of the appropriate forward modelling hyper-
cubes based on vegetation structure information; iii) direct estimation of vegetation
parameter inputs of the hyper-cubes, such as vegetation water content, mean angle of
scatterer orientation or scatterer density, iv) detect sudden surface changes (e.g., tillage,
harvest) that could be disruptive to the accurate retrieval of surface parameters, and v)
direct inversion of soil moisture and surface roughness for bare surfaces, and from corrected
coherency matrix information for vegetated surfaces.

Observations and all available auxiliary data should be used to recover land cover
classifications for selected scattering classes in order that the effects of vegetation on the
returned signal may be estimated and corrected. This stage could involve decomposition
techniques that affect an estimation of vegetation cover simultaneously with the estimation
of the surface contribution to polarimetric coherency. These techniques are model-based
and will require considerable development, particularly in the case of forested areas.

Forward modelling and field observation should be used to create data (hyper) cubes, which
now include the variation in both (terrain normalized) backscattering coefficients and
guantities derived from the polarimetric coherency matrices. The hyper-cubes will
characterize the variation of these observables in terms of, as a minimum, soil permittivity,
roughness (ks), vegetation (vector of attenuation and scattering parameters) and incidence
angle. Interpolation can be achieved by fitting suitable parametric hyper-surfaces to the
hyper-cube information. For surface scattering, Advanced Integral Equation Model (AIEM) or
numerical models are preferable since they do not require approximate parameterization or
tuning parameters inherent to empirical or semi-empirical models. For vegetation, coherent
scattering models are preferred over radiative transfer models.

Volumetric soil moisture could be used rather than soil dielectric permittivity. However, the
permittivity, being a more fundamental physical property, is preferable as it is independent
of soil compositional properties, therefore reducing the number of axes of the data hyper-
cube.

It is envisioned that data hyper-cubes will be generated independently from the actual soil
moisture processor, although there is likely to be some feedback between the essentially
independent development processes, particularly regarding the interface to the reference
set. As long as the interface format is maintained, data hyper-cubes may be updated,
perhaps using improved forward modelling. Updated hyper-cubes can then be used with the
existing soil moisture processor.

Hyper-cubes are required for each of the selected vegetation scattering class (i.e. land
surface class with distinctive scattering behaviour) and each sensor configuration
(frequency, polarization, incidence angle). Data hyper-cubes for a variety of land covers and
crop types have already been produced for the SMAP and SAOCOM missions. Such cubes
require testing for vegetation conditions typical of Australia, or any other area outside the

56
Annex 12. Basis Of An Australian Radar Soil 30th June 2013
Moisture Algorithm Theoretical Baseline Document



% MONASH University & 57

7.3.11.

7.3.12.

7.3.13.

7.3.14.

V01_00

Basis of an ATBD for a radar soil moisture mission

areas of interest to SAOCOM and SMAP against which those models have been tested.
Additional data hyper-cubes will be required for the land covers of interest not matching
those already studied, and for polarimetric observables beyond the channel backscattering
coefficients not yet considered in the SMAP and SAOCOM methodologies.

Soil permittivity retrieval shall be performed by minimizing a cost function (e.g. weighted
sum of squares of differences between measured and interpolated observables) using the
time series of multi-channel observations in a least squares process. Where the data permit
direct retrieval of soil permittivity and roughness estimates (e.g. Dubois HH, VV and XBragg
full-pol) these may be combined with those recovered from the hyper-cubes in the cost
function. Soil permittivity estimates from SAR at fine resolutions may be constrained to
agree (closely if not precisely) with coarse resolution estimates from passive remote sensing.

If fully-polarimetric SAR data are available, surface parameters such a surface roughness and
vegetation water content can be retrieved at each time-step together with permittivity (ie.,
unconstrained retrieval). Since in general the time-scale of the changes in surface roughness
and vegetation is longer than that of soil moisture, a possible alternative approach is that of
assuming constant vegetation and surface roughness conditions during the observation
window, so that any changes in backscatter can be attributed to soil moisture changes (plus
a random component due to the radar measurement error). Only one value of surface
roughness and vegetation parameter(s) are then retrieved over a defined observation
window, together with a time-series of soil permittivity (ie., constrained retrieval). This
approach has two main advantages: i) it does not require fully polarized scattering matrix at
each and every time-step, since soil permittivity can be derived from compact or dual-
polarimetric observations under the assumption of constant surface roughness and
vegetation, and ii) the time-series information helps reduce the impact of the backscatter
measurement error which would affect the retrieval at individual time steps, because the
value of roughness and vegetation parameters are chosen to minimize, in the least-square
sense, the difference between simulated and observed SAR parameters at all time-steps
within the observation window. Therefore it is applicable to a mission design which involves
frequent (e.g., 2-3 days) dual-polarized acquisitions with less frequent (e.g., 1-2 weeks) fully-
polarized acquisitions.

The drawback of the constrained retrieval option is that changes in surface conditions within
this window (e.g., tillage, harvest, vegetation growth) will deteriorate the performance of
the approach. In such a case by constraining surface roughness and vegetation parameters
to fixed, but possibly erroneous, values, further error is introduced into soil moisture
estimates. Unconstrained retrieval of roughness and vegetation status conducted in parallel
with constrained retrieval might, however, indicate where the approximation of constant
soil roughness/vegetation is valid so that advantage might be taken of any accuracy
improvements in soil moisture estimates that use this assumption.

Abrupt changes, such as tillage and harvest, should be detected to correctly position
observation windows, whether using the constant or variable roughness assumptions, and
this implies sampling on time intervals short enough to permit wide sample windows over
anticipated time intervals between abrupt changes. Sampling at full-channel capacity,
coupled to retrieval without the assumption of constant surface roughness, should be robust
to abrupt changes that do not alter soil moisture, but of course abrupt changes are likely to
be followed by soil moisture changes, for example harvesting will tend to dry the soil in the
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absence of precipitation, and this is an argument for ensuring the capability to detect abrupt
changes through frequent sampling.

Slower changes such as vegetation growth will be more difficult to detect. Again polarimetric
analysis might be helpful in this sense. However, it is suggested that an optimized
observation window should be selected to minimize these changes. The optimization of the
observation window is a developmental task.

Note that whilst full-polarimetry is optimal, it does come at a cost, both in power and swath
width, and therefore coverage. Thus, whilst the optimal SAR sensor would be capable of fully
polarimetric operation, it may be desirable to operate the sensor in compact or dual-pol
modes for some portions of the observation cycle. Operation below full-polarimetry will
however incur a risk (discussed in following sections) in the estimation and correction for the
effects of Faraday rotation, and this will have an impact upon both the accuracies of the soil
moisture retrievals, and the land cover scattering class classifications.

The computational cost of minimizing the cost function will depend on both the number of
dimensions of the data cube and the resolution at which the hyper-surfaces are
interpolated. Hyper-cubes with higher dimensionality can be generated to include other
surface or vegetation factors known to impact the backscatter (e.g., surface correlation
length, soil texture/composition, vegetation height or structural parameters, with the
caveats (see earlier) regarding the non-stationary nature of surfaces and the correct choice
of multi-scale correlation lengths with regard to observation resolution). This could result in
improved soil moisture retrievals, provided there are sufficient independent observables
from multi-channel (e.g. polarimetic, incidence angle diverse, ancillary) data, but a higher
computational cost of the search algorithm. Soil permittivities may be converted to soil
moisture estimates using a dielectric model appropriate to the soil types in the area of
interest and which best fits the field data for the area of interest (e.g. Peplinski, 1995 with
later corrections).

Land cover classification for each observation yields a land cover time series which can be
used to determine the correct hyper-cube set and retrieval model for polarimetric
coherency work. The land cover will be used to determine which method will be used to
separate the bare-soil contribution to observed signals. For bare surfaces the extended
Bragg model can be used with full- or compact-polarimetric data, or the Dubois model with
dual, HH and VV data, to recover soil permittivity and roughness estimates directly. These
estimates could be used to optimise the hyper-cube inversion, and/or as a component of the
cost function. For moderately vegetated areas, L-band polarimetric data can be analysed in
terms of a Freeman-Durden type decomposition to yield the bare-surface contribution to
the polarimetric coherency, which can then be used with the extended Bragg model, and the
hyper-cubes as described above. For forested areas the use of P-band data is recommended
in a manner similar to that suggested for the L-band data in moderately vegetated areas.

It should be highlighted that, particularly in the case of agricultural crop with strong
phenological dynamics, the relative strengths of the scattering mechanisms change during
the vegetation-growing cycle, and depending on it, the relationship between the various
scattering components and soil moisture will vary. This behaviour is the underlying reason
that the land cover classification is divided into separate vegetation scattering classes, rather
than simply by crop species, since a crop may be classified in a variety of scattering classes
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throughout the growing season. The choice of retrieval algorithm, or set of hyper-cubes, will
depend upon the scattering vegetation class, and not the crop species or class.

Having SAR observations available at fixed incidence angle would reduce the number of
variables and simplify the inversion problem. The local incidence angle is highly important in
determining backscatter properties. Whilst a repeat orbit could limit the variation of local
incidence angle for any particular point, it could not ensure the same incidence angle
everywhere due to terrain variations. Thus the soil moisture inversion algorithm must be
able to accommodate different incidence angles. Waiting for an orbit to be repeated could
place a limit on the frequency of observation, and on the versatility of the system. Incidence
angle diversity at a single site could be seen as advantageous in the same way that other
multi-channel approaches have been shown to be advantageous. Thus, both algorithm and
system design should consider incidence angle variation and not be constrained to a single
incidence angle.

A fixed azimuth view angle between subsequent SAR observations is important for time
series and change detection algorithms, and for agricultural fields where returns are
influenced by azimuthal surface asymmetries (e.g., periodic crop rows, plant rows) that
cause changes in backscatter and polarimetric coherency matrix with azimuthal angle. This
implies an exact repeat orbit for each overpass.

It is crucial to highlight that the application of fully-polarimetric coherency matrix, whilst
providing additional information on terrain orientation and vegetation cover, implies
stringent, additional requirements for the polarimetric calibration of the SAR system. In
particular, accurate calibration of the cross-talk, channel imbalance and relative phase are
essential. Polarimetric decomposition techniques are sensitive to system noise, and
therefore good Signal-to-Noise Ratio (SNR) is required, together with noise filtering and
suppression techniques which preserve the polarimetric information content of the data. .
Accurate external polarimetric calibration permitting the use of polarimetric techniques is
possible, even in the presence of Faraday rotation, and the suppression of noise in
polarimetric data can be undertaken using standard tools.

Performance of the algorithm should be optimised during the development phase and
repeatedly monitored thereafter to ensure stability using additional field data. The algorithm
performance will vary with vegetation cover but should achieve (in the presence of 0.5dB
noise) a retrieval error better than 0.06 vol/vol for vegetation water content up to 2kg/m?’
and soil moisture content up to 0.4 vol/vol. Performance will depend upon scale and
resolution of the desired product. It is important that a spatially and temporally varying
error estimate be provided together with the reported soil moisture.

As satellites can only directly measure the near-surface layer of soil at discrete instances in
time, and there is a need for continuous soil moisture data over the root zone, land model
data assimilation approaches to providing such a product should also be developed.
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8. SYSTEM SPECIFICATIONS

8.1. Overview

8.1.1.

8.1.2.

8.1.3.

8.1.4.

8.1.5.

The various candidate algorithms for applying radar data to soil moisture estimation have
uncertainties and limitations. Some of the algorithms involve temporal change approaches
rather than snap-shot algorithms. Final algorithm selection will impose differing
requirements on the orbit and calibration requirements. Consequently, any new mission
should plan around the most conservative requirements (full polarimetric capability, exact
orbit repeat, minimum spacecraft dependent calibration differences, etc.) to provide
greatest flexibility in the algorithm selection right up to and even after launch.

The ultimate design of any orbital SAR mission is the result of a number of compromises. For
example higher resolution demands greater bandwidth and transmitted power, or
improvements in azimuth resolution require higher pulse repetition frequencies that result
in smaller possible swath widths (the theoretically achievable SAR azimuth resolution is one
half of the antenna length independent of altitude).

A complete system design for even a single SAR system is beyond the scope of the current
task, and recommendations have been made for essentially three or at least two SAR
systems: S-band/L-band for bare surfaces, L-band for vegetated surfaces and P-band for
forested surfaces.

Rather than attempt a SAR design exercise, the following discusses relevant parameters of
SAR systems and their relationships, and comments on the probable values of these
parameters based on existing or conceived SAR systems, particularly those that may be
suited to soil moisture retrieval.

The process of task-dependent SAR-system design is one that should be conducted at the
start of any SAR-project.

8.2. SAR System Design Considerations

8.2.1.

8.2.2.
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The design of SAR a system is dependent on the application for which it is intended; in this
case soil moisture retrieval. Typically, the specifications provided to the design engineer
would include:

Ground range and azimuth resolution

Incidence angle range

Desired swath width

Wavelength

Polarizations

Sensitivity, expressed as Noise Equivalent Sigma Zero (NESZ)

Radiometric accuracy, expressed as Signal-to-Noise Ratio (SNR)

The recommendations of the previous Section indicate a preference for multiple frequency
band operations, polarimetric operation, 2-3 day repeat observation, with wide area
coverage at good resolution, national coverage, a requirement for topographic information,
and ultimately soil moisture information retrieval at scales of 1km or better, according to the
application.
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Resolution Requirements
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Based on the preceding recommendations it is anticipated that the SAR soil moisture system
be capable of ground resolutions of the order of 10m or better.

This figure may seem excessively fine given the suggestion that soil moisture product
resolution of only order of 1km is required for most applications. However, for irrigation
scheduling pixel sizes of less than 100m resolution will be required. At a resolution of 17m in
range and 9m azimuth (azimuth resolution is generally finer than range resolution), 100m
resolution only represents around 65 independent backscatter samples.

For fully developed speckle single look complex SAR pixel backscatter cross sections are
exponentially distributed. N independent samples yield an estimate of the mean backscatter

cross section with error 1/\/N of the mean (radiometric accuracy). Quoted accuracy
requirements from the literature generally indicate less than 0.5dB uncertainty in the
absence of noise. A 0.5dB error corresponds to an uncertainty of ~12% of the mean, or an
independent sample size of ~67. A 0.3dB error requirement on estimates of backscattering
coefficient corresponds to an independent sample size of ~195, or a resolution of around
10m in ground range and 5m in azimuth if the soil moisture product resolution is around
100m. Note that the above calculation is valid when the system SNR ratio is high, i.e., when
it is determined primarily by the number of looks and is not limited by the SNR (this may not
be true for smooth and/or dry bare surfaces, particularly for HV measurements). Low SNR
will increase the number of independent samples required to achieve the same accuracy

according to 1/\/N *(1+1/SNR)

Slant range resolution is given by d,, =c/2B, where c is the speed of light and B is the

frequency bandwidth. Ground range resolution depends upon incidence angle € and is
given by 5Rg =c/2Bsin@ . Azimuth resolution can be approximated by half the real aperture

length (i.e. half the length of the antenna) &,, =D/2if the sampling rate is sufficient. Thus

requirements on resolution translate into bandwidth and antenna length requirements.
Given our two examples of ~18m (range) by 9m (azimuth) or 10m (range) by 5m (azimuth)
this suggests that the bandwidth (which must be contained in legal limits) at a nominal 45°
incidence should be between respectively 12MHz and 21MHz and the antenna length should
be between respectively 18m and 10m, for a S-, L- or P-band system.

PALSAR 1l, SMAP and SAOCOM all suggest antenna areas of the order of 30m?, with antenna
lengths of around 10m. NovaSAR appears to have a rather small antenna, even taking into
account the higher frequency. Aside from BIOMASS, which suffers severe Tx restrictions at P-
band, and SMAP which reports a rather low bandwidth and resolution, reported SAR system
bandwidths are of the order of 21MHz or higher. It is noted that Tx restrictions are possible
at S-band that could restrict the reported NovaSAR bandwidth and limit its range resolution.

It should be noted that a bandwidth of 21MHz will ensure the resolution requirement at
satisfied at angle equal or higher than 45°, while for lower incidence angle the range
resolution will increase according to 5Rg =c/2Bsin@

61
Annex 12. Basis Of An Australian Radar Soil 30th June 2013
Moisture Algorithm Theoretical Baseline Document



% MONASH University & 62

Basis of an ATBD for a radar soil moisture mission

Orbit Properties

8.2.9. The orbital velocity can be approximated by

8.2.10.

8.2.11.

8.2.12.

8.2.13.

8.2.14.

8.2.15.
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GM
V= R +h)
+
(Eq. 5)
where G is the universal gravitational constant (G = 6.67384 x 10 m® kg™ s, M

is the Earth mass (M = 5.9736 x 10** kg, GM = 3.986 x 10 m® s?), R is the Earth radius (R =
6.371 x 10° m), and h is the satellite altitude.

As satellite altitude increases, orbital speed decreases and the satellite has further to go to
complete the orbit. The period is the distance travelled in an orbit divided by the speed, i.e.

TEZﬂ\/(R+h) :zﬂ\/(R+h)
GM H (Eq. 6)

Since the Nyquist azimuthal sampling rate must be such that pulses are separated by less
than half the antenna length along-track, so the PRF is related to the satellite altitude. The
SNR is also related to the satellite altitude, and is better for lower orbits, which in turn
implies increased PRFs and hence thinner swaths. The achievable pulse power depends also
upon SAR technology and pulse duration. Gallium Nitride technology permits greater peak
pulse powers. Longer pulses affect the PRF and range ambiguity design space.

Over the observed range of satellite altitudes from Table 2.2 it can be calculated that the
orbital velocity varies from roughly 7.6km/s (period 1.57h) at 500km altitude down to
7.5km/s (period 1.64h) at 700km altitude. Lower altitudes yield improved SNR or a reduction
in power for fixed SNR, but also mean increased atmospheric friction and a need to carry
and use more fuel to maintain orbit over the intended lifetime of the sensor.

A near-polar (orbital inclination between 96.5° and 102.5°), sun-synchronous orbit will
permit near-global coverage and can be selected to have repeat ground-track characteristics
that appear to be desirable for the soil moisture retrieval task.

Sun-synchronous orbits exploit the orbit perturbation caused by the Earth's non-spherical
gravitational field. By choosing the correct inclination and altitude of the satellite orbit, the
right ascension of the ascending node can be made to process at the same rate as the Earth
revolves around the Sun, in a sun-synchronous orbit. It is an orbit for which the plane of the
satellite orbit is always the same in relation to the Sun. It can also be defined an as orbit for
which the satellite crosses the equator at the same local time each day.

A sun-synchronous orbit is not fixed in space. It must move 1° per day to compensate for the
Earth's revolution around the Sun. Since the Earth makes one revolution (360°) around the
Sun per year, it is possible to calculate the rate of change of the Sun's right ascension:
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0.9856473°/solar day. The sun-synchronous design equation is

20>’ (1-€’)

0
3R

cosi+
(Eq.7)

where i is the inclination angle, A is the orbital rate of the Earth (0.9856473°/solar day), a
is the semi-major axis, € is the orbital eccentricity, J, is the coefficient for the second zonal

term, Req is the Equatorial radius of Earth, and g is the gravitational constant of the Earth.

Whilst the repeating ground track governing equation is

K/N) 1
(@,—A) (o+M)

(Eq. 8)
where K is the number of orbits in repeat cycle, N is the number of days in repeat cycle,
@, is the inertial rotation rate of the Earth, @ is the argument of perigree perturbation,

and M is the mean anomaly perturbation.

These two equations form a non-linear pair that requires solution using numerical
techniques to estimate the Kozai mean semi-major axis and orbital inclination of the sun-
synchronous orbit with the chosen repeating ground-track criteria.

Such modelling is beyond the scope of the present task. However it is noted that repeat-
cycle periods quoted in Table 2.2 range between 12 and 17 days. The stated optimum repeat
time is 2-3 days. Based on this evidence alone one might conclude that multiple satellites are
required to achieve the desired repeat observation rate. However, detailed modelling of the
possibilities is required before one would be able to draw such a conclusion.

Incidence Angles

8.2.19.

Low incidence angles were seen to be desirable from the point of view of soil moisture
retrieval, but low incidence angle implies poor resolution in the range direction, and
therefore reduced sample size and increased uncertainty in soil moisture estimation. There
is also a connection between antenna size and wavelength that limits the range of possible
incidence angles (measured at the ellipsoid) and affects achievable swath width.

8.2.20. The range of incidence angles reported in Table 2.2 is anywhere between 8 and 70°. The

8.2.21.

V01_00

SMAP mission is being designed to operate above 40°, even though the algorithm review
suggested that lower incidence angles are to be preferred.

For a spherical Earth approximation swath width for incidence angles in the range 20-45°
and altitudes between 500-700km are in the range of 280-375km.
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Sensitivity

8.2.22.

8.2.23.

8.2.24.

8.2.25.

8.2.26.

The radar equation, also known as the radar range equation, is the fundamental equation of
radar. For a SAR system a useful version of the radar equation is the single-look signal (or
clutter) to noise ratio (SNR or CNR) (e.g. Ulaby et al., 1982):

PragG A 00y Py oA 64,0,

_ " Tx—avg

CNR = 3p3 o 3
2(47)° R kT, VL 8mRAK,T, VL
(Eq.9)
where P, . is the average transmitted power, 77 is the radiation efficiency, A is the
47 A
antenna area, G = 7 7 is the antenna gain, A is the carrier frequency, §Rg is the

ground range resolution, o, is the backscattering coefficient, R, is the range (slant range),
k, is the Boltzmann’s constant, TSyS is the system equivalent noise temperature, V, is the

satellite speed, and L are the losses (e.g. electronic, signal processing, atmospheric etc.)

The sensitivity is usually defined in terms of NESZ. This is defined as the clutter level
(backscattering coefficient) that produces a received power equal to the thermal noise
power, and is found by setting the CNR equal to unity in the previous equation, i.e.

_2(47PRik,T, VL 8TRIAKT,VL

sys sys
P.

NEc )
Txfang 77 5Rg

PGPS,

Tx—avg Rg

(Eq. 10)

Reported NESZ values for the systems listed in Table 2.2 are in the range -22dB to -35dB.

For an average power of 700W, antenna gain of 34dB (typically over 30dB for space-borne
SAR), L-band wavelength of 24cm, ground-range resolution of 10m, slant range of 840km,
system temperature of 580K, losses of 7dB and orbital speed of 7.6km/s the NESZ value is -
29.3dB, which is squarely in the reported range.

Operating at lower altitude, increasing average Tx power and antenna size and efficiency will
all serve to improve the NESZ and improve the sensitivity of the system. For example, an
increase of average transmission power to 2000W in the previous calculation yields a
decrease in NESZ to -33.9dB, again within the reported range.

The “Mythical” Minimum Antenna Area

8.2.27.

V01_00

The titular description acknowledges the study by Freeman et al. (2000) which showed that
the following arguments really only apply if the SAR system design is constrained for
maximum swath width as well as finest resolution.
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Start by noting that the maximum illuminated swath on the ground has width

AR

w e —
D, cosn

g(max)

1N

(Eq. 11)

where R is the mid-swath slant range, D,, is the width of the antenna in elevation, and 77 is
the incidence angle.

To avoid velocity ambiguity a SAR must have a PRF of at least twice the velocity divided by
the antenna length: PRF>2V, /D, =V, /J, With a 10m long antenna and a speed of

7.6km/s the minimum PRF is around 1.5KHz.

z(min) *

For short pulses, the requirement for range unambiguous operation (inside the desired
swath) implies that 2R, /c<2R . /C+IPP where PP =1/PRF is the inter-pulse period

and the slant ranges mark the near and far limits of the desired swath. Thus the desired
swath in slant range is bounded by W, <(R,,, —R,..)<cIPP/2=c/2PRF.

nhear

Or to put it another way the PRF has an upper bound of PRF <c/2(R.,, — R

far near ) .

So W, <c/2PRF and PRF 2=V, /0,,n 50 that W, <(c/2V,)0,,min O W,/ Opymin S€/2V,.
Note that for Low Earth Orbit (LEO) satellites the value of ¢/ 2V is nearly constant at 2 x 10*.

Given that the slant range swath is related to the ground range swath by W, :Wg sinn, a

constraint on the antenna area can be obtained as:

W, (max) _ 2ARtanp < c

5az(min) DaZDe/ 2V5 (Eq 12)

4V_AR
and thus A >Ttan77.

This bound on the effective antenna area Aeff applies only when the SAR design requires

maximum swath width and minimum (finest) azimuth resolution. However may SAR systems
have been operated with effective antenna areas less than this by operating with a PRF less
than the nominal Doppler bandwidth, and recording returns over a desired swath width that
is less than the maximum swath width (Freeman, 2000).

Although SAR antennas may be smaller in area than this constraint implies this does not
mean that SAR antennas can be arbitrarily small. The size of the antenna has significant
impact on the gain and therefore on the SNR which must be taken into account. The brief
discussion presented here is no substitute for a rigorous treatment of the calculation of
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range and azimuth ambiguity levels, which must be considered in a robust design process.

There is recent interest in the use of multi-channel SAR systems that, for example, have a
single Tx module and multiple Rx modules that are designed to overcome the minimum
antenna area constraint (Ma, 2011; Wang, 2012). In such systems a small Tx-aperture is
implemented to illuminate a wide area and the Rx antenna is split into multiple sub-
apertures with independent receiver channels. Since each individual antenna does not meet
the minimum antenna area constraint, range and/or Doppler ambiguities inevitably pollute
the recorded echoes. However coherent processing in either the temporal or the Doppler
domains that combine the aliased signals received by all sub-apertures enables a single
output signal free of ambiguities.

Nevertheless we can be guided by the constraint which can be used to yield an indication of
the anticipated antenna size. For an L-band system with a mid-swath range of 800km and a
mid-swath incidence of 45° the minimum effective antenna area is around 20m>. Note that
the effective area is usually related to the actual area by an efficiency constant so that the
actual area is greater. Taking into account the efficiency factor, this estimate is consistent
with the antenna areas reported in Table 2.2. For S-band the antenna minimum area is
reduced to approximately 8m”. The NovaSAR antenna area is reported at 3m?, so that one
might anticipate NovaSAR will employ multi-channel techniques and/or have a desired
swath less than maximum. At P-band the antenna area constraint yields an estimated
effective area of 60m?, in keeping with the BIOMASS sensor actual reported antenna area.

Ambiguities

8.2.38.

8.2.39.

8.2.40.

8.2.41.

V01_00

The previous criterion on antenna size provides only around 6dB suppression for ambiguous
targets at the edge of the swath. This level of suppression applies also in azimuth (Doppler)
where the Nyquist sampling rate does not entirely prevent spectrum components from
being aliased into the main part of the spectrum. For the given range and azimuth antenna
patterns the PRF should be selected to yield low range and azimuth ambiguity noise
contributions.

The Doppler processing bandwidth is bounded by the PRF. Using less than the full bandwidth
can help filter out significant Doppler spectrum aliased into the main Nyquist window,
permitting improved ambiguities noise levels at the cost of azimuth resolution.

The integrated ambiguity to signal ratio (ASR) is written as a function of fast time, or
equivalently the cross-track position in the image. Evaluation of the expression for the ASR
requires knowledge of the two-dimensional antenna pattern, and of the target reflectivity to
be formulated in terms of the Doppler frequency and the time delay.

This information is unavailable and estimation of the ASR for the proposed soil moisture
retrieval SAR system lies beyond the task description. However the ambiguities are
important and it is possible to comment on what the likely ambiguity levels will be. The
following is a very brief discussion of the origin of azimuth and range ambiguities in a
conventional SAR. The advent of SMART SAR systems with SCan On Receive (SCORE)
algorithms will affect the expressions for ambiguities given here. Once again it is completely
beyond the bounds of this task to give a full SAR system design.
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It is noted that the total integrated ambiguity ratio for the proposed BIOMASS P-band
system is of the order of -20dB. Younis et al. (2010) have proposed a SMART X-Band SAR that
uses SCORE and report RASR below -40dB and AASR values below -40dB rising to -20dB at
near range. DLR have also proposed that the Tandem-L system will have RASR values
typically between -50dB and -40dB across a 350km swath in fully-polarimetric strip-map
operation (with a bandwidth of 85MHz, orbit altitude of 760km, repeat cycle of 8 days,
incidence angles between 26.3 and 46.6°, average Tx power of 96W and a PRF of 2.365kHz).

It is anticipated that a soil-moisture SAR system designed to detect low backscattering
coefficients from dry, smooth surfaces will require a design that permits a low total
ambiguity.

Azimuth Ambiguity

8.2.44.

8.2.45.

The ratio of the ambiguous signal to the desired signal, within the SAR correlator azimuth
processing bandwidth, is commonly referred to as the azimuth ambiguity to signal ratio
(AASR). The integrated AASR can be estimated using the following equation (Curlander,
1991):

B,/2

> J-Gz(f+m><PRF)df

m¢0_3p/z
B,/2

[&(f)af
/2 (Eq. 13)

AASR =

where G° is the two-way far field antenna power pattern in which it is assumed that the
scene reflectivity is uniform and that the antenna pattern is separable in elevation and
azimuth.

With this equation the AASR is typically found to be of the order of -20dB. At this value
ambiguous signals may still be observed in images where bright ambiguities coincide with
regions of low backscattering coefficient.

Range Ambiguity

8.2.46.

8.2.47.

V01_00

Range ambiguities arise when echoes from preceding and succeeding pulses arrive at the
antenna simultaneously with the desired return. For space-borne radars, where several
inter-pulse periods elapse between transmission and reception of a pulse, range ambiguities
can be significant.

Ambiguous signals arriving at time t; do so from ranges given by

A, =£(t,. +4j
2 PRF (Eq. 14)
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where the integer j is zero for the desired pulse. The integrated range ambiguity to signal
ratio (RASR) is obtained by taking the ratio of integrated power of the range ambiguities to
the desired pulse returns. The definition of the RASR as a function of slant range is given by
(Curlander, 1991):

R? sinn,, FZNf G*(6;)
G*(6,) = R;siny,
J==Ny (Eq. 15)

RASR(R,,) =

where i is the incidence angle for thejth ambiguity, and Gij is the beam angle for the same
ambiguity.

Generally the RASR is lower than the AASR, although the two may have commensurate
values.

Polarization

8.2.49.

8.2.50.

8.2.51.

8.2.52.

8.2.53.
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The recommendation for soil moisture is at minimum dual-polarization (HH and VV) and
preferably full-polarization or failing that compact-polarimetry (transmit circular, receive
linear orthogonal). For space-borne SAR a single-polarization on-transmit offers twice the
swath width compared to full polarization. This is linked to SAR system design issues as
previously discussed: full-polarimetric operation requires two Tx pulses of orthogonal
polarizations and therefore doubles the required PRF, which, as per the preceding
discussion, implies a reduction in swath width, for example the ALOS PALSAR, swath width
reduced from 70km for the dual-pol (HH, HV) mode to 30km for the full polarization mode.

Note that dual-polarization (HH and VV, dual-like polarization) also implies a doubling of PRF
and therefore offers no advantage over full-pol operation beyond system processing
bandwidth considerations, and actually risks reduced calibration accuracy.

The reduced swath-width in full-polarization mode has a detrimental impact on revisit times.
A compact-polarimetric mode where the transmit polarization is circular, and the only
constraint on the two receiving polarizations is independence, has advantages for SAR
system design. The choice of the polarizations of the two receive channels is not significant
as any polarization on-receive can be synthesized from two orthogonal polarization
measurements.

At a low frequency (L-band or lower, S-band doesn’t suffer so much from ionospheric
effects) where the ionosphere has a significant effect, the circular transmit polarization is
the only sensible option, as it provides an effective constant polarization as seen by the
scattering surface: an essential condition for a meaningful multi-temporal analysis.

The pseudo-covariance matrix for Tx-circular Rx-orthogonal compact polarimetry is very
similar to the full polarimetric covariance matrix, and carries much the same information for
soil moisture retrieval. Reconstruction of the cross-polarized backscattering coefficient from
compact polarimetry has been shown to have very low sensitivity to Faraday rotation,
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suggesting that land cover scattering class separation essential to the correct application of
retrieval algorithms would be possible for compact-polarimetric operation (Dubois, 2008).
However there has been some evidence to suggest that HV reconstructed from compact
polarimetry data is not entirely reliable.

A procedure has been developed to correct for the ionospheric effects in compact
polarimetry mode and the technique appears robust (Dubois, 2008). The calibration of CTLR
(Circular Tx, Linear Rx) compact polarimetry SAR data has been addressed quite recently
(Chen, 2011) indicating that this can be achieved through a combination of passive and
active polarimetric calibration targets and Total Electron Content (TEC) measurements from
the Global Navigation Satellite System. It has also been proposed that the Faraday rotation
angle can be estimated from raw SAR data obtained in full-polarimetric mode from a few
pulses, and that the CP—mode Faraday rotation correction is possible if the angle is known.

Thus CTLR compact-polarimetric mode, having been recommended for soil moisture
retrieval, offers a significant advantage for SAR system design as it preserves swath width
and reduces the revisit interval and appears to present little risk for calibration.

However a full analysis of the impact of the use of compact polarimetric mode SAR as
opposed to full polarimetric mode for soil moisture retrieval should be undertaken for those
algorithms accessible to the compact polarimetric mode data. For example, the effects of
terrain slope on compact polarimetry data are not fully understood, and the implications for
antenna design must be investigated. It is noted that the design of compact polarimetric
mode is compatible with full polarimetric mode so that compact polarimetric mode can be
integrated readily with full polarimetric architectures. Thus, having compact polarimetric
mode as an option on an otherwise full polarimetric mode system would give the
opportunity of enhanced system performance without additional risk.

Faraday Rotation

8.2.57.

8.2.58.

V01_00

Faraday rotation is mentioned in the previous discussion and a brief description is given
here.

As microwave radiation propagates through the ionosphere, the linearly polarized field
components are rotated by an angle () (Faraday rotation), depending on the geomagnetic
field and the ionospheric electron content. The Faraday rotation angle may be expressed
approximately as

_ -2
Q=13557f "N, <B,cosasec y > (Eq. 16)

where Q is the rotation angle in degrees, f is the radio frequency in GHz, N; is the

ionospheric total electron content (TEC) in TEC units, where 1 TECU = 10 electrons m?, B,
is the Earth’s magnetic field in Tesla, & is the angle between the magnetic field and the
wave propagation direction, and ¥ is the angle between the wave propagation direction
and the vertical to the Earth’s surface.
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The angular brackets denote an average of the enclosed quantities along the path of the
wave. The TEC is significantly affected by the solar radiation. The global TEC measurements
performed by a network of GPS receivers have shown significant temporal and latitudinal
variations. In the equatorial and mid-latitude areas, the TEC varies from a few TECU at night
to as high as 60 TECU at noon, while the TEC has less temporal variation with a nominal
value of about 20 TECU in the polar regions. By assuming a typical worst-case geometry ( } =

45°, o =0°) and a high-latitude value of B, =5.44 x107° at 300 km altitude near the peak of

the electron density, an upper bound estimate for () in degrees at 1.4GHz for a satellite
operating above the ionosphere is

Q =053N, (Eq.17)

Therefore, the Faraday rotation at a frequency of 1.4GHz can be as low as a few degrees at
night and as high as 20 to 30° at noon local time.

Farady rotations of a few degrees are thought acceptable in most applications but will
obviously have an effect on soil moisture retrievals which depend at a minimum on the two
co-polar scattering amplitudes which are mixed by the rotation according to:

M, M, | | cosQ sinQ (S, S,| cosQ sinQ
M, M, | |-sinQ cosQ|S, S |-—sinQ cosQ

w

:| (Eqg. 18)

Freeman (Freeman, 2004a,b) developed a method for estimation and correction of Faraday
rotation effects using fully-polarimetric SAR data. More recently Meyer and Nicoll (Meyer,
2008) demonstrated prediction, detection and correction of Farady rotation in ALOS PALSAR
fully-polarimetric data.

My-Linh Truong-Loi et al (2009) have presented an estimation procedure for Faraday
rotation with compact polarimetry mode SAR which relies on the scattering properties of
bare surfaces. The selection of the bare surfaces was based on a new parameter, the
conformity coefficient computed from compact polarimetry measurements shown to be
Faraday rotation invariant. Once estimated, the Faraday rotation can be corrected in
compact polarimetry mode SAR data by applying a simple rotation matrix to the two-
component compact polarimetry mode scattering vector.

My-Linh Truong-Loi et al (2009) estimate the HH and VV backscattering coefficients from the
compact polarimetry mode measurements over bare soil surfaces and estimated soil
moisture using the Dubois et al. (1995) algorithm. The results obtained using compact
polarimetry were shown to be in good agreement with those obtained from the standard
Dubois et al. algorithm using fully polarimetric data. This suggests that, for soil moisture,
compact polarimetry mode SAR can be used instead of HH and VV dual-polarized
measurements, obtained from full-polarimetric SAR.

Thus it is anticipated that by operating in either full-polarimetric or TCRL compact

70
Annex 12. Basis Of An Australian Radar Soil 30th June 2013
Moisture Algorithm Theoretical Baseline Document



&

MONASH University 71

Basis of an ATBD for a radar soil moisture mission

polarimetric mode it will be possible to both estimate and correct for the effects of Faraday
rotation, and ultimately estimate soil moisture.

8.3. Summary

8.3.1.

A full SAR system design was beyond the scope of the current task. We have reported
relevant SAR system design parameters for proposed systems and discussed the likely
location of the SAR system in the parameter space for a SAR that will be capable of providing
soil moisture estimates.

9. ACCURACY AND FURTHER CONSIDERATIONS

This section discusses accuracy estimates for the recommended soil moisture retrieval algorithms.
The risks, special cases (i.e., vegetation and terrain effects) and ancillary data requirements for soil
moisture retrieval are also considered. Future R&D requirements to improve or calibrate/validate
algorithms and an operational system are also discussed.

9.1. Accuracy Assessment

9.1.1.

9.1.2.

9.1.3.

V01_00

Since it is not possible to assess the SAR system accuracy without a detailed SAR system
design, it is not possible to make an unambiguous determination of the proposed soil
moisture retrieval algorithm(s) presented here. Even were the SAR system design to be
available there are many factors that will affect the overall accuracy of the algorithm, such
as the fidelity of the data-cubes to be employed in the inversion process, that are impossible
to assess, and the obscurity of which prevent a meaningful assessment of algorithm
performance or accuracy. Modelling of the overall soil moisture algorithm accuracy is
beyond the scope of the current task.

The error budget for the soil moisture retrieval from a SAR system will include the items
listed in Table 9.1. An estimate of the error associated with each item will strongly depend
on system design and it is outside the scope of the present task.

It is possible however to report those accuracies either observed or predicted for existing or
proposed methods and to suggest that these should be used to bound the desired retrieval
accuracy of the proposed algorithm.
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Table 9.1 Main component of the soil moisture Error Budget for a SAR mission for soil moisture retrieval.

9.1.4.

9.1.5.

V01_00

SAR noise
(Radiometric accuracy + Noise Equivalent Sigma Zero)

Calibration Error

physics modeling error

Ancillary data error
(vegetation, soil texture, soil temperature)

Conversion error from dielectric constant to soil moisture

Effect of scaling and scene heterogeneity

Clearly algorithm performance will vary according to terrain, local incidence, vegetation
cover, ionospheric conditions over the period of observation etc. Whatever the conditions,
Walker and Houser (Walker, 2004) reported that near-surface soil moisture observations
must have an accuracy better than 0.05 vol/vol to positively impact soil moisture forecasts
and that satisfying the spatial resolution and accuracy requirements was much more
important than repeat time. The previous section suggested that if the SAR system meets
the desired resolution requirements then uncertainties of less than 0.3dB should be possible
in the estimation of backscattering coefficients (ignoring DEM area and incidence angle
errors). Furthermore uncertainty in co-polar backscattering coefficients due to calibration
errors should be of the same order of magnitude, and the SAR system NESZ should be small
enough so as not to present an issue for accuracy. Dubois et al (Dubois, 1995) reported that
using their technique, an error of 0.5dB in relative calibration between HH and VV channels,
commensurate with that estimated here, corresponds to a 3.5% error in soil moisture
retrieval at 45° incidence. Reported calibration and stability errors for the HH/VV ratio for
ALOS PALSAR for example are only a fraction of a dB, which suggests that, without any
additional sources of errors, uncertainties of the order of 0.05 vol/vol in soil moisture
retrieval are feasible.

The algorithm proposed in this document follows closely that proposed for the SMAP radar-
only retrieval. The major difference is in SAR resolution. The SMAP mission has targeted 0.06
vol/vol as the accuracy goal of the radar-only 3km product, for vegetation water contents up
to 5kg/m’ (though it is acknowledged that this may not be feasible at the higher vegetation
amounts, considering the challenge of radar soil moisture retrieval in the presence of
roughness and vegetation). Assuming a level of noise commensurable with that suggested in
this document (0.5dB or 13% of the mean), synthetic studies indicate a soil moisture
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accuracy of the time series algorithm (with constant roughness) better than 0.06 vol/vol
mostly for VWC up to 2kg/m? and m, up to 0.4 vol/vol over simulated grass and corn
surfaces Generally the soil moisture retrieval error increases with VWC. The Monte-Carlo
0.5dB noise simulation results were made with 6 time-series records corresponding to a
period of 18 days considering planned SMAP’s 3-day repeat cycle. These estimates did not
include the accuracy of the hyper-cube modelling, nor errors due to the conversion from
dielectric constant to soil moisture. The VWC error was set to 20%.

Assessment done with truck-mounted scatterometer data and in-situ measurements, which
does include hyper-cube modelling and dielectric conversion errors, indicate a soil moisture
accuracy of 0.044 vol/vol and 0.054 vol/vol respectively for bare surface and pasture. The
VWC varied from site to site between 0.16 and 2.5kg/m”. The roughness, correlation length,
and VWC remained temporally constant throughout the test periods. The SMAP team
suggested that the error over the grass is likely due to uncertainty of the forward modelling
of the vegetation scattering.

The retrieval accuracy will improve when using longer time-series, provided these are short
enough to not include significant changes in surface conditions (e.g., harvest, tillage,
vegetation growth).

The analysis on system requirements presented in Section 8 suggests the soil moisture
retrieval accuracies predicted for SMAP should be possible at spatial resolutions of 3km for a
SAR matching the SMAP specifications, and at considerably finer spatial resolutions for SAR
systems with wider bandwidths (at least 21MHz) provided NESZ and calibration accuracy are
tuned so that the overall measurement error is within 0.5dB at the desired spatial resolution
of soil moisture retrieval.

Regarding the feasibility of a frequent revisit time of 2-3 days, a suitable SAR system has
already been proposed in PALSAR Il which it is anticipated will provide 42MHz bandwidth for
fully-polarimetric operation over a 50km wide swath with a repeat interval of 14 days. A
constellation of at least four such SAR systems might be required to address the desired
repeat-cycle. The preceding analysis suggested that the proposed SMART SAR TanDEM-L
system will have a 350km swath in fully-polarimetric strip-map operation with a bandwidth
of 85MHz, orbit altitude of 760km, repeat cycle of 8 days, and incidence angles between
26.3 and 46.6°. A constellation of three TanDEM-L type satellites would appear to satisfy the
repeat-cycle requirements at the same time providing the fine spatial resolution required to
achieve SMAP retrieval accuracy at 1km resolution.

Uncertainty due to physical modelling error will depend on the model chosen. As an
example, model assessment undertaken by the SMAP team using numerical (NMM3D) and
semi-empirical (Dubois) models and measurement data for bare surfaces indicate an
expectable Root Mean Square difference between field-observed and model-simulated
backscattering coefficients of 1.4dB (NMM3D) and 1.9dB (Dubois). Field studies have
generally found semi-empirical models (Oh, Dubois) to have a variable accuracy within 0.5-
3dB at L-band depending on surface conditions. Since the sensitivity of backscattering
coefficient to soil moisture observed in field studies is in the range 0.1-0.6dB/(%vol/vol)
(Narayan et al., 2004), the impact of the model uncertainty on soil moisture retrieval could
be significant especially on wet conditions (>30%vol/vol), due to a certain saturation of the
backscattered signal to soil moisture. This stresses the importance of the development and
validation of accurate hyper-cubes as a development task.
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9.1.11.

9.1.12.

9.1.13.

9.1.14.

9.1.15.

Basis of an ATBD for a radar soil moisture mission

Errors due to ancillary data will strongly depend on the source of the data selected for a
processor and therefore it is not possible to comment on the accuracy of each ancillary data
set here. Nevertheless, it can be anticipated that, assuming that as a minimum a dual-pol
channel system is available so that surface roughness can be retrieved, the main source of
ancillary data error will be that on the Vegetation Water Content. Analysis by the SMAP
team indicates that, even with a VWC error of 20% the 0.06 vol/vol error should be
achievable.

Using the best current dielectric model, the conversion from dielectric constant to soil
moisture is accurate to about 0.02 vol/vol (Mironov et al. 2009). This would minimally affect
the total error budget when added to the total error by root-square-sum. Errors in ancillary
information on soil texture and soil temperature will also affect the conversion to soil
moisture. However, these will be of second order relatively to the sources of error discussed
in earlier sections, provided that reasonable estimate for such quantities can be derived
from ancillary sources of data.

Very little research has gone into assessing the error associated to the scene heterogeneity
for retrieval of soil moisture from SAR. Low resolution SAR observations like that of SMAP
exacerbates this problem which introduces uncertainty due to speckle beyond that modelled
using theoretical clutter distributions for homogeneous areas. By moving to finer resolution
such obstacles may be largely overcome if the resolution of the final product is close to the
spatial scale of the land cover.

NASA has recently proposed an airborne P-band system (AirMOSS) for root zone soil
moisture retrieval (Chapin, 2012). Having an airborne system circumvents the bandwidth
and Faraday rotation issues to which a space-borne P-band SAR is subject. NASA has
estimated that their system should permit estimation of soil moisture below mixed forest
(using the data-cube approach) with an error of 0.05 vol/vol provided that calibration errors
are less than 0.5dB.

It should however be stressed again that a full-system design and analysis must be
undertaken before any concrete conclusions can be drawn as to the ultimate performance
of the combined SAR and soil-moisture retrieval system.

9.2. Risks and Special Cases for Soil Moisture Retrieval

9.2.1.

Dew

9.2.2.

V01_00

There are a number of factors which can have a detrimental effect upon soil moisture
estimation or which requires special attention. If these issues are not addressed then the
range of application of the proposed soil moisture retrieval algorithm may be limited to bare
soils or soils without substantial vegetation cover.

A strong recommendation has been made by Simmonds et al. (2004) that SAR observations
for soil moisture retrieval should be made between the hours of 6AM and 9AM. Moreover,
all current satellites for measuring soil moisture have used a 6AM overpass time. Their
stated reason was that during this time surface soil moisture better reflects the water
content of the underlying soil, and soil moisture gradients are at a minimum. However, this
overpass time is likely to result in data acquisition under the presence of dew on the ground
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9.2.3.

9.2.4.

Deserts

9.2.5.

Basis of an ATBD for a radar soil moisture mission

in many instances, which forms generally between the hours of 6AM and 8AM.

In an earlier paper Riedel et al. (2001) reported that the effects of dew on L-band
backscatter and quantities derived from polarimetric decompositions were largely
unaffected by dew, but in a later paper De Jeu et al. (2005) report that the L-band
Microwave Polarization Difference Index (MPDI) shows marked diurnal variations they
associate with dew. If the MPDI shows variations then it is expected that the co-polar
backscattering coefficients may also exhibit such variations, which in turn will affect soil
moisture estimates. Conversely, it has been suggested that water on leaves is only affects
microwave data when there is a complete film of water; wate droplets do not affect the
microwave response (Kerr, Personal Communication). Since this issue is not fully resolved
and there appears to be no strategy for dealing with early morning dew on soils and
vegetation, this factor is identified as a risk to be mitigated through further study.

Data acquisition during or shortly after rainfall is likely to have a similar effect on the
microwave data and its subsequent interpretation as dew, as both result in water on the
vegetation.

While most often dry, deserts are subject to a periodic rainfall. Moreover, dew forms in the
desert but evaporates rapidly. The sudden variation of water content in a desert and the
rapid evaporation of water could imply more frequent revisit times than those proposed,
and adequate modelling of evaporation to ensure proper soil moisture estimates.
Furthermore, dry sandy soils permit deep penetration of microwaves, with scattering arising
from substantial depths, which could easily confuse soil moisture retrieval algorithms
designed to interpret backscatter signals arising from homogeneous soil surfaces. Thus, soil
moisture retrieval over desert environments warrants further study.

Vegetation

9.2.6.

9.2.7.

V01_00

Overlying vegetation both scatters microwave energy back towards the radar, and
attenuates the energy reaching the soil surface. The attenuation may vary according to
polarization. In addition, microwave energy is scattered forward from the vegetation to the
soil surface, and then returns to the radar. These effects interfere significantly with the
direct-surface backscatter, which underlies soil-moisture retrieval algorithms. Dubois et al.
(1995) found the effects to be significant for vegetation with NDVI > 0.4.

The soil-surface/vegetation scattering mechanism carries information on soil roughness and
moisture content. Polarimetry can be used to separate the scattering mechanisms and
therefore has the potential to extract soil moisture information in the presence of
vegetation. Hajnsek et al. (2009) have demonstrated that polarimetric decomposition
techniques can be used in this fashion, and have demonstrated soil-moisture retrieval
accuracies of 0.01 vol/vol for soils below vegetation and crops. This is in comparison with
the same techniques for bare surfaces which yielded accuracies of 0.08 vol/vol. The
techniques work best with mature crops and vegetation and the studies were conducted at
L-band.

75
Annex 12. Basis Of An Australian Radar Soil 30th June 2013
Moisture Algorithm Theoretical Baseline Document



% MONASH University & 76

9.2.8.

Forests

9.2.9.

9.2.10.

Snow

9.2.11.

9.2.12.

V01_00

Basis of an ATBD for a radar soil moisture mission

Whilst their work suggests that polarimetric techniques are valuable in extending the range
of terrain type over which soil moisture can be retrieved using SAR, there exists no specific
or universal algorithm. Thus, vegetation with a NDVI > 0.4 represents a risk for soil moisture
retrieval that should be mitigated through further research, perhaps using airborne system
studies that mirror the required imaging geometries of proposed space-borne systems.

Microwave attenuation in forests starts to fall-off dramatically only below L-band, although
there is some fall in forest attenuation between C-band and L-band. Whilst some direct-
ground and ground-volume returns may be present at L-band, they are generally masked by
direct-volume returns to the extent that, as has been suggested, soil moisture retrieval over
forests at L-band is not practicable. However, it is fair to say in general that forests are to P-
band SAR what crops are to L-band SAR. Thus the polarimetric SAR and PolInSAR techniques
that can be employed at L-band to separate scattering mechanisms over crops could be
employed to P-band data over forests.

Whilst a comparable analysis to the L-band crop case has yet to be undertaken at P-band,
My-Linh Truong-Loi et al. (2012) have recently developed a simplified distorted-Born model
for forest backscatter and applied it to P-band airborne SAR data over forests. They found
soil moisture retrieval accuracy of 0.05 vol/vol below forests, and at the same time were
able to recover soil roughness and forest biomass values. Thus, there is clear potential for P-
band to yield soil moisture estimates under forests and thereby increase further the area
accessible to soil moisture retrieval from radar. P-band satellite SAR data are necessarily low
bandwidth and subject to Faraday rotation. Thus, although the potential exists there
remains much work to be done to reach the level of an operational soil-moisture retrieval
algorithm for forested areas.

Although covered in snow, underlying soil may be wet, or indeed frozen. The SMAP mission
baseline requirements call for SMAP to provide measurements of surface freeze/thaw state
for areas north of 45° north latitude. The retrieval of landscape freeze/thaw state relies on
analysis of time series radar backscatter for identification of temporal changes in backscatter
associated with differences in the aggregate landscape dielectric constant that occur as the
landscape transitions between predominantly frozen and non-frozen conditions. This
technique assumes that the large changes in dielectric constant occurring between frozen
and non-frozen conditions dominate the corresponding backscatter temporal dynamics. This
is generally valid during periods of seasonal freeze/thaw transitions for most areas of the
cryosphere.

For bare soils covered in dry snow microwave penetration is good and backscatter is
representative of the surface backscatter. When the snow melts, from the inside out, free
water exists in a complex arrangement above the soil surface and backscatter can be
strongly influenced by the wet snow layer. Areas classified as thawed by SMAP and/or the
algorithm proposed in this work, can be subject to wet-snow scattering. Thus a wet snow
class is required for the data-cube based inversion procedure and substantial effort will be
required to generate this information.
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9.2.13.

Basis of an ATBD for a radar soil moisture mission

In the case of SMAP, flags for frozen soil and/or snow will be used to mask areas where soil
moisture retrieval will not be attempted. For Australia, snow coverage is limited to a
relatively small area in the alpine area between Canberra and Melbourne, and parts of
Tasmania. Frozen soil is not expected to be an issue for Australia.

Steep Terrain

9.2.14.

9.2.15.

9.2.16.

9.2.17.

Multichannel data have been proposed for soil moisture retrieval, and at a minimum this is
the dual co-polar channel (HH and VV) data. If terrain is tilted in azimuth then the local H-
polarization direction is rotated about the radar line of sight and the HH and VV received
signals are mixtures of HH and VV local scattering amplitudes. To see this, imagine the
extreme case whereby the terrain is tilted 90° without altering the antenna orientation.
Locally H becomes V and vice-versa, so that an algorithm using HH and VV backscattering
coefficients will have its inputs reversed and soil moisture retrievals will be incorrect
(probably failing the VV > HH filter stage).

In order to correctly recover the local HH and VV backscattering coefficients from which the
soil moisture must be estimated, two things are needed: i) an estimate of the terrain slope
and ii) the full scattering matrix which enables the line of sight basis rotation to be reversed.
This implies full-polarimetric operation; the terrain slope may be estimated from full-
polarimetric SAR data, but an accurate DEM and accurate geo-referencing are an alternative.

This is not a severe issue for essentially flat terrain, but for steep terrain it becomes a
significant problem. If the chosen solution does not employ a fully-polarimetric SAR, for
example if compact polarimetry is chosen, then additional research will be required to
develop an algorithm that yields accurate soil moisture estimates for steep terrain.

One particular risk associated with terrain slope is the presence of steep regular facets,
typical in tilled agricultural fields. These can determine a strong backscattering signal due to
a coherent backscattering component, which surface scattering models are not trained to
take into account. This can saturate the signal and completely mask the soil moisture effect
on the backscattering coefficient. This effect is strongly dependent on incidence and azimuth
angle, and it peaks when the radar line of sight is specular to the facets. Therefore, the
comparison of observations at different incidence angle will be useful to reveal and avoid
such cases.

Water Bodies

9.2.18.

Water bodies, including farm dams, flood irrigation and ponded water following heavy
precipitation can all have a significant impact on radar backscatter response. Consequently,
these, in addition to rivers, lakes etc. need to be identified, and either masked from the
retrieval or a correction procedure developed.

Radio Frequency Contamination

9.2.19.

V01_00

Contamination of the measured backscattering by illegal out-of-band transmissions from
other devices, or by legal transmissions from other devices operating in the same or similar
waveband can significantly degrade the quality of the data, rendering it useless. While this
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is not expected to be a major problem for data over Australia, its on-board identification and
mitigation should be given careful consideration at the sensor design stage.

9.3. Ancillary Data Requirements

9.3.1. Based on the algorithm recommendation presented in previous sections, this section
provides a list of the ancillary data sets (other than SAR observations) which will be required
in order to derive a soil moisture product from SAR observation using the recommended
algorithms. Indication of the most likely sources of such data is also provided.

9.3.2. Ancillary data required for such a mission fall into two categories — static ancillary data
which do not change during the mission and dynamic ancillary data which require periodic
updates ranging from seasonally to daily. Static data include parameters such as permanent
masks (land / water / forest / urban / mountain), elevation and derived slope, permanent
open water fraction, and soils information (primarily sand and clay fraction). The dynamic
ancillary data include land cover, precipitation, effective soil temperature, vegetation water
content and dynamic water.

9.3.3. Factors to consider when selecting adequate sources of ancillary data are inherent accuracy
and impact on the soil moisture retrieval accuracy, latency, spatial resolution, temporal
resolution, and coverage.

Static Ancillary Data

9.3.4. Knowledge of local topography is needed to interpret and correct SAR observations for local
incidence angle and reverse the line-of-sight basis rotation. The terrain slope may be
estimated from fully-polarimetric SAR data, but an accurate surface Digital Elevation Model
(DEM) is an alternative. Due to the strong impact of incidence angle on the backscattering
coefficients, a DEM should be available at resolution not lower than that of the final soil
moisture product. Geoscience Australia and CSIRO Land & Water have recently released an
improved version of the Shuttle Radar Topography Mission (SRTM) DEM mission covering all
of Australia at 30 and 90 metres. The near future will also see the availability of high-
resolution (~12m) global DEM from the TerraSAR-X/TanDEM-X mission. High-resolution DEM
from existing LiDAR coverage is a possibility for local areas.

9.3.5. Information on high-level land use is useful to drive the selection of retrieval cases (i.e.,
agricultural areas, forest, bare soils, inland water bodies, ocean etc.) and the
flagging/masking of special cases (permanent snow, permanent water bodies, etc). Land use
information from global (e.g., MODIS IGBP Land Cover 500m, ECOCLIMAP) and national
(National Dynamic Land Cover Dataset 2000-2008 250m) products, could be useful for such
tasks.

9.3.6. It must be highlighted that, due to their static nature, the land cover data sets mentioned
are unable to reflect changes in scattering mechanism associated to plant phonological
dynamics which can determine changes in the applicable physical model (or hyper-cube).
While they provide some distinction between different crop types, they might not be
sufficient to discern differences in scattering mechanism required to achieve a good soil
moisture accuracy. Thus, land information is also required as a dynamic data set.
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Soil textural information (in particular sand and clay fraction and soil bulk density) is
required for the conversion of the dielectric constant or soil permittivity output of the
retrieval algorithms into a volumetric soil moisture value. Accurate soil textural information
is costly and difficult to obtain over large areas. Moreover, the impact of the uncertainty in
soil texture on the soil moisture retrieval is of second order relatively to other major sources
of error (i.e., SAR measurement error, scattering model error). As a reference, the same
value of dielectric constant will result in soil moisture values varying of as much as 0.03
vol/vol and 0.06 vol/vol for an estimation error in sand fraction of respectively 20% and 45%.
Therefore available global, national or regional databases are considered suitable sources of
textural information (e.g., Harmonized World Soil Database, Australian Bureau of Rural
Science) where direct observations are not available.

Dynamic Ancillary Data

9.3.8.

9.3.9.

9.3.10.

9.3.11.

Information on Vegetation Water Content (VWC), the main vegetation parameter affecting
microwave scattering and attenuation, may be derived from global products. Vegetation
indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Difference
Water index (NDWI) have been used for such a task in the past (mostly from MODIS and
AVHRR global product). Such products have spatial (250m-1km) and temporal (10 days -
1month) resolutions suitable to characterize vegetation dynamics.

An alternative for VWC estimation adopted by the SMAP mission is to derive VWC estimate
from a Radar Vegetation Index (RVI) obtained from a combination of SAR backscattering
coefficients (HH, VV, HV). RVI or any other parameter based on the radar backscatter should
correlate with the vegetation water more strongly than the optical/infrared NDVI or NDWI,
because fundamentally optical radiation cannot penetrate vegetation canopies while the L-
band microwave signal can. Furthermore the RVI is concurrent with the radar observation.
However, further research is needed to demonstrate the robustness of the relationship
between RVI and VWC.

Surface temperature information is required since it affects the conversion of the dielectric
constant or soil permittivity output of the retrieval algorithms into a volumetric soil moisture
value. However, contrary to passive microwave soil moisture retrieval where temperature is
crucial in determining the microwave emission, the impact of soil temperature on the soil
reflectivity (hence on the SAR soil moisture retrieval) is of second order relative to other
factors. The SMAP mission will use temperature data from global weather forecasting
models, and that would be appropriate for the required use in a radar mission.

As indicated above, information on the dynamic nature of land cover is also important for
soil moisture retrieval. Earlier sections have outlined that polarimetric analysis should
complement the use of static land cover to discern separate vegetation scattering classes,
rather than simply vegetation classes, to overcome this limitation. Thus, the capability to
derive this information directly from the radar data itself in a semi-automated fashion is
highly desirable.

9.4. The Way Forward: R&D Requirements

9.4.1.

V01_00

Current advances in RF technology mean that design of SAR systems is beginning to focus on
Smart Multi Aperture Radar Techniques (SMART). SMART SAR systems employ multiple
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elevation and/or azimuth channels combined with Digital Beam-Forming (DBF) capabilities
that permit the synthesis of multiple receiver apertures, which in turn permit greater
flexibility in choice of system parameters such as pulse repetition frequency (PRF) and
antenna size.

Thus for a given geometric resolution, SMART SAR systems may have wider swaths, higher
SNR and lower ASR, than traditional SAR systems. These are all key quantities for SAR
systems that enable improvement of performance. For example, increased swath widths can
be used to reduce the revisit times and enable more frequent observations.

SMART SAR technology may not however overcome the maximum echo window length
limitation of monostatic pulsed SAR systems, which arises through their inability to
simultaneously transmit and record echoes. For a given Pulse Repetition Interval (PRI) the
transmit duty cycle thus limits the duration of ground echo reception, and imposes either a
restriction on the maximum swath width (single swath operation mode) or causes gaps in
the coverage (multi-swath mode). Reducing the duty cycle mitigates this effect. However,
for a fixed peak power this is at the expense of the reduced average transmit power, and
SNR. Advances in efficiency through Gallium Nitride (GaN) technology allow handling
significantly higher amounts of peak power. Thus GaN is an attractive solution for increasing
the echo window length without sacrificing average transmit power and hence SNR.

Algorithm Development

9.4.4.

9.4.5.

9.4.6.

9.4.7.

9.4.8.

9.4.9.

V01_00

Clearly, the proposed algorithms are currently limited in area of application and additional
algorithm development is implied. The following are suggestions for some of the research
and development activities which should precede the implementation of a SAR-based soil
moisture monitoring system. In the following discussion, areas to be considered are
Australian, but more generally the areas will include anywhere soil moisture retrievals are
required for global hydrological and climatological modelling.

Testing of available hyper-cubes computed for the SMAP and SAOCOM missions should be
undertaken where they are considered potentially suitable to scattering classes in areas of
interest.

Additional development and validation of hyper-cubes for terrain scattering conditions not
computed for SMAP but considered necessary for areas of interest should be undertaken.

Optimization between dimensionality of the hyper-cubes (i.e. additional parameters in the
forward model) and relative improvement in soil moisture retrieval against increased
computational cost should be addressed.

Evaluation of the time-series algorithm with assumption of constant surface roughness over
different in situ data and for different land cover classes should be performed.

Use of polarimetric decomposition to distinguish between different land cover scattering
types and in particular crop types with different plant structure for pre-classification and
selection of hyper-cubes should be undertaken. In particular this investigation should focus
on the use of compact polarimety in addition to full polarimetry.
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9.4.11.

9.4.12.

9.4.13.

9.4.14.

9.4.15.

9.4.16.

9.4.17.
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Use of polarimetric SAR (PolSAR) and polarimetric-interferometric SAR (PolInSAR) to derive
agricultural crop structural parameters to drive forward modelling in hyper-cubes should be
investigated, particularly for compact polarimetry over full polarimetry considerations.

A full analysis of the impact of the use of compact polarimetry mode SAR as opposed to full
polarimetry mode for soil moisture retrieval is needed. In particular, the ability to recover
terrain slope to correct for line of sight polarization rotation and the feasibility of correcting
vegetation effects using a compact polarimetric SAR system, and the implications for
antenna design should be undertaken for L-band and S-band.

The use of compact polarimetric and full polarimetrec PolSAR to detect and flag changes in
surface conditions and the evolution of crop phenological state (e.g., tillage, harvest,
vegetation growth) should be developed.

A study is recommended to consider the impact of changes in surface conditions, both slow
(e.g. vegetation growth) and fast (e.g., tillage, harvest, vegetation growth) to the soil
moisture accuracy under the assumption of constant surface roughness and vegetation. This
is needed to determine the optimal length of the observation window.

The question of soil moisture retrieval below forests should be addressed through a program
of high-fidelity modelling of full polarimetric and compact polarimetric PolSAR and PolInSAR
forest returns at P-band, coupled to analysis of existing and newly acquired P-band SAR data
sets. The latter, through one of the several P-band airborne systems currently operating,
such as DLR’s F-SAR, ONERA’s SETHI and JPL/FEDI’s GeoSAR, or indeed NASA’s AirMOSS
when available. Comparisons of simplified DBA model-based retrievals against PolSAR and
PolInSAR decomposition methods should be undertaken. Data cube generation for P-band
SAR over forests will be required, and particular scattering classes of interest will be tropical
forests and Eucalypt savannahs.

If a decision is to be made to move forward with a SAR system for soil moisture retrieval,
then SAR system designs should be commissioned that will address the optimal SAR system
design for the chosen resolution of final soil moisture product both for the L-band and P-
band SAR systems, and perhaps an S-band system if this is to be considered. The design
should include the use of GaN technology and SCORE operation using digital beam forming
to optimise coverage, and thereby reduce the number of satellites required to meet the
frequent repeat-cycle conditions.

Scale is still an issue using satellite SAR. Depending on the resolution of the required soil
moisture product, the scale of observation can compound the effects of multi-scale
processes, e.g., topography, surface roughness, soil moisture variations and mixed scattering
mechanisms. Further studies are needed on the application of spatial filtering and averaging
techniques to address the scale issue.

If a design with early morning (6:00AM - 8:00AM) overpass times is selected, investigations
on the feasibility of correction for, or at least flagging of, dew presence would improve the
quality of the soil moisture product. Similarly, the impact of rain droplets on vegetation
surfaces needs to be better understood.
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10. CALIBRATION AND VALIDATION

10.1.

10.2.1.

10.2.2.

10.2.3.

10.2.4.

10.2.5.

V01_00

Overview

The satellite calibration and validation requirements are an important yet often undervalued
component of most satellite missions. This activity should be considered in several stages:

e Pre-launch algorithm validation
e Post-launch satellite calibration
e Post-launch algorithm validation
e Validation of derived products

While considerable work has been undertaken already on developing soil moisture retrieval
algorithms using radar, a lot of this work has been undertaken for landscape conditions and
management practices that are considerably different to those of Australia. Moreover,
existing data sets are not appropriate for testing of algorithms such as the time-series
candidate algorithm proposed here, as they have been undertaken for only short durations
exhibiting a limited range of soil moisture conditions.

The back-bone of any long-term satellite algorithm validation study is the requirement of a
soil moisture monitoring network. Unlike the United States and Europe, there is no
operational soil moisture network in Australia. However, there are two research networks;
CosmOz and OzNet.

While the CosmOz network has broad Australian coverage (Figure 10.1), these are individual
stations in predominantly coastal grassland environments. The cosmos sensors used by this
network measure cosmic rays, which are then related to the soil moisture a calibration
equation (Franz et al., 2013). The nature of this measurement approach results in an
average soil moisture for an area of approximately 300m radius. While this measurement
scale eliminates many of the point-to-pixel issues related to soil moisture measurement, the
spatial resolution may be too large for radar-based soil moisture missions, especially if
targeting 50m rather than 1km scales. Moreover, the measurement corresponds to a soil
layer thickness of approximately the top 30cm, while the soil moisture from L-band radar
corresponds much more closely to a top 5cm layer. Consequently, these data are better
suited for root-zone soil moisture retrieval validation using the surface soil moisture
observations.

The OzNet soil moisture monitoring network has coverage only for the Murrumbidgee
Catchment of Australia (Figure 10.2). However, it has a total of 64 soil moisture stations
distributed in both “dense” and “sparse” network arrangements (Smith et al., 2012). It was
established with satellite validation specifically in mind, and has been used to support both
of the current dedicated soil moisture missions that are based on passive microwave
technology; SMOS (Peischl et al., 2012) and SMAP (Panciera et al., 2013). Importantly, each
of the monitoring stations make soil moisture measurements of the top 5cm, and studies
have been undertaken at many of the sites to understand the relationship with soil moisture
in the surrounding area. These sites are distributed across a diversity of landscape
conditions, including many of the dominant crops and management practices used in
Australia.
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Although it is recommended that any dedicated satellite soil moisture mission for Australia
should have national coverage, the Murray Darling Basin is clearly a very important region of
Australia, and its diversity represents most of the dominant landscape conditions and
management practices of Australia. Moreover, the Murrumbidgee Catchment itself is
representative of climate, landscape, and management practices across much of the Murray
Darling Basin. Together with the existing backbone of OzNet soil moisture infrastructure,
this makes it an ideal candidate for any future satellite validation studies that would support
a radar-based soil moisture mission for Australia. The three CosmOz sites located in the
Murrumbidgee Catchment would also be valuable for validation studies of derived products
such as root-zone soil moisture.

Figure 10.1 Locations of comisc ray soil moisture sensors installed as part of the CosmOz network

vo1_o0

operated by CSIRO (http://cosmoz.csiro.au/cosmoz/).
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Figure 10.2 Locations of soil moisture monitoring stations installed as part of the OzNet operated jointly by
Monash University and the University of Melbourne (http://www.oznet.org.au/; Smith et al., 2012).

10.3.

10.3.1.

10.3.2.

10.3.3.

V01_00

Pre-launch Algorithm Validation

Based on experience and extensive review of the literature, a range of algorithms have been
selected for further consideration. These algorithms require further development and
validation prior to launch of any dedicated Australian radar soil moisture mission, for a range
of reasons:

They have been developed under landscape conditions and land management practices
that are not necessarily representative of those in Australia.

The soil moisture, vegetation and roughness conditions have often been for limited
ranges as compared to those that will be encountered in large scale application.

The Australian experiments conducted to date have been for relatively short periods of
time, which is particularly limiting for testing of time-series and temporal-change
approaches.

Most soil moisture experiments, including those recently undertaken in Australia, have
been for relatively flat terrain.

Consequently, available data sets need to be extended to include moderate topographic
relief such as is characteristic of much of the western slopes of eastern Australia, and be
conducted for a range of vegetation types and soil moisture conditions representative of
Australia, extending over a modest time period.

The pre-launch validation studies have two main requirements; i) ground-based data
including soil moisture content, surface rough characteristics, and extensive vegetation
characterisation for a range of land cover types, and ii) polarimetric radar backscatter data
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at L-band over a long period of time and with revisit frequency suitable for soil moisture
monitoring (2-3 days).

North American experiments for radar algorithm development have extended for as long as
8-weeks, with data collection on a 2-3day repeat (eg. SMAPVEX12). It is proposed that to
cover the short comings of existing data sets for Australia, an airborne field experiment be
conducted for at minimum a 3-month duration. The period September to December is most
likely to capture the dynamics from wet to dry and bare soil to mature crops, being the
spring growing season.

Soil moisture varies significantly from day-to-day, while vegetation and soil characteristics
change on much longer timescales unless altered by human intervention. Consequently, it is
recommended that sites be chosen around existing soil moisture monitoring stations, and
that these be expanded to “core” sites, by having a minimum of three soil moisture sensors
across each radar footprint under study. Vegetation and soil characteristics would be
monitored on a fortnightly basis, or earlier if necessary. Addition of a webcam will assist
with monitoring of human intervention, especially in cropped fields, allowing timely ground
sampling of vegetation and surface roughness. The in-situ ground monitoring would be
supplemented by intensive sampling on several occasions throughout the campaign, so as to
fully understand the point-to-pixel scaling of these core sites.

It is recommended that there be at least two replicates of the core sites selected to
represent each landscape type, with not more than 20 core sites in total. These core sites
would also form the back-bone of post-launch validation studies as described below. It is
proposed that given the network of existing sites, their characteristics and site logistics,
these core sites be located in the Coleambally, Maroondah, and Kyeamba areas.

At the present time there are no satellites that can provide the data needed for pre-launch
algorithm development and validation. The only satellite with an L-Band sensor and
Australian coverage in the immediate future will be ALOS-2, and this has a 14 days repeat
cycle. Soil moisture algorithm development requires exact orbit repeat with a 2-3days
interval over a time frame of several months. Consequently, airborne L-band sensors will be
required to provide a suitable radar data set.

While there are several airborne L-Band radar systems available world-wide, including UAV-
SAR and PALS in the United States, these are in high demand for supporting the science and
satellite missions of their respective countries. The likelihood of having them deployed to
Australia for a minimum 3-month duration experiment would be highly unlikely, and the
costs would be significant. Moreover, Australia has recently acquired its own airborne L-
Band radar capability; the Polarimetric L-band Imaging Synthetic aperture radar (PLIS).

The PLIS (Figure 10.3) has full polarimetric and single-pass InSAR capabilities. It has been
used in several Australian soil moisture experiments of one to three weeks duration, in
support of the SMAP mission; the Soil Moisture Active Passive Experiments — SMAPEx
(Panciera et al., 2013).
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ANTENNAS

Figure 10.3 The Polarimetric L-band Imaging Synthetic Aperture Radar (PLIS) on an Australian aircraft (left) and
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10.4.1.
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a sample image from the Yanco study area (right) that is shown in Figure 10.2.

It has been shown that PLIS can meet the calibration requirements of soil moisture
retrieval algorithms, with an absolute calibration of 0.9dB for co-polarised channels.
Moreover, PLIS can be made available for a 3-month duration experiment, and there is
Australian expertise to conduct the campaigns, operate the sensor, and process the data.

Amongst other things, the data collected from this intensive pre-launch campaign will be
used to test the SMAP and SAOCOM data cubes for Australian conditions.

Apart from soil moisture, radar based algorithms for a number of other ancillary data need
to be matured and validated. Being able to derive these ancillary data from the same radar
platform will substantially simplify the operational soil moisture retrieval from satellite
radar algorithms. These ancillary data requirements include i) water detection, ii)
vegetation classification, and iii) vegetation water content estimation. Development of
these ancillary data products can be achieved from the same airborne field experiment,
with minimal considerations to specific requirements. The principal consideration not
already covered would be ground truthing of standing water; specifically flood irrigation
and/or flood waters under vegetation.

In line with other soil moisture missions, a range of “optional” algorithms should be carried
until well after launch, before converging on a single algorithm, or preferred algorithm
according to specific conditions. The performance or each algorithm will ultimately be
evaluated and decided against the post-launch validation criteria and comparisons
described below. Feasibility in terms of computing load, available ancillary data,
applicability of a single algorithm to a wide range of conditions, and so on, will need to be
considered when making a final choice.

Post-launch Satellite Calibration

Although the SAR instrument can undergo internal calibration (characterising the behaviours
of each individual component in the RF chain, with particular attention to the antenna
pattern both ex-situ and in-situ) full calibration is always a combination of internal and
external calibration: the latter involving external targets imaged by the operational system.
A coherent and extended approach to radiometric and polarimetric calibration and stability
appraisal is required, and will most likely involve a suitable government agency, particularly
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as the SAR data will be used for scientific purposes by a global community of earth and
climate scientists.

Australia is a very suitable site for calibration targets, having wide flat areas of low clutter
over which to deploy suitable targets. However it is advisable to have calibration sites close
to the equatorial regions where TEC is the lowest, and the expansive regions of the Amazon
rainforest provide (mostly) stable reference targets. In addition, other countries already
operate SARs in the bands considered and have established calibration sites and procedures
that could be of use. A complete plan for calibration and stability studies, including target
design, manufacture and deployment is beyond the scope of the current document, but
should be included as part of the SAR system design.

The calibration technique chosen will depend upon system choice, with a risk associated
with compact polarimetry mode.

Without full polarimetry operation, there is a risk of greater uncertainty in soil moisture
retrieval because the system may not yield calibrated data. Even if a fully polarimetric
calibration solution is recovered, it will only work properly when applied to fully polarimetric
data.

Post-launch Algorithm Validation

The post-launch validation will need to establish that the soil moisture product(s) meet the
agreed criterion of the mission (see discussion in Section 2). There may be staged criterion
requirements, according to beta version, provisional version, and validated version.

Ongoing maturity of the “validated” version is also to be expected over time. Consequently,
there is a requirement for long-term benchmarks that can be used to verify both product
improvements resulting from algorithm upgrades, as well as product stability due to possible
sensor degradation.

The complete validation strategy for the post-launch phase should include:
e Field experiments

e (Coressites
e Sparse networks, and
e Other products.

Field experiments in the post-launch phase would be primarily ground-based. These would
involve intensive point-based soil moisture monitoring across satellite pixels that represent
the range of landscapes and management practices that dominate in Australia. These focus
fields would be co-located with the soil moisture network stations, giving further
understanding of the point-to-pixel relationships of those sites. These experiments would
also put a significant emphasis on the ancillary data requirements of soil moisture retrieval
from radar, including soil texture, soil roughness root mean square height and correlation
length, vegetation water content, and vegetation structural parameters. Other techniques,
such as high-resolution airborne passive microwave retrievals, could be used to supplement
this validation, allowing validation across a greater number of pixels than would otherwise
be possible using ground measurements alone (Walker et al., 2012). The field experiments
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will yield the most reliable data for validation of satellite retrievals, but will be limited in
time and space, as these are resource intensive. The field experiments should be conducted
as early following launch as possible, and should capture as large a range of moisture and
vegetation conditions as possible. Consequently, these would typically be conducted during
the September to December growing season.

Core sites provide the opportunity for multiple in-situ soil moisture stations across single
satellite footprints that represent the diversity of Australian conditions. Having multiple soil
moisture stations in each footprint will further help to alleviate point-to-pixel uncertainties.
It is recommended that there be several replicates of each landscape condition represented,
limited to not more than about 20 different fields. These sites should be built off the
backbone of existing sites in both crop and grassland areas, representing flat and moderate
topography. The core sites will provide a long-term reference for validation of the satellite
derived surface soil moisture content with a high degree of confidence, but will lack the
associated ancillary data of field experiments, and will represent only a small number of
pixels across the full spatial domain. These core sites should be operated for the duration of
the mission.

Sparse networks allow for more satellite pixels to be monitored, yielding a greater diversity
of landscape conditions in the validation than from core sites alone, but with significant
uncertainty in the point-to-pixel scaling of the measurements. All sites with a top 5cm soil
moisture value, traceable calibration standards, and latency of less than a month should be
included in this comparison. However, the current understanding is that this would be
limited primarily to the stations that are already included in OzNet, unless the Bureau of
Meteorology (or similar) were to add soil moisture monitoring capabilities to their automatic
weather stations, as recommended by the WMO. These sparse network sites should also be
operated for the duration of the mission.

Other products should also be used as much as possible, to further extend the spatial
validation through time, and thus provide greater confidence in the derived soil moisture
products. Such products include soil moisture estimates from other satellites and hydrologic
models. However, all other satellites with coverage of Australia have a coarser spatial
resolution and/or are based on sub-optimal retrieval algorithms. Consequently, comparisons
with SMOS and/or SMAP, for example, would require aggregation to scales ranging from
3km to 40km. Likewise, models are typically run on spatial resolutions greater than 1km,
and due to limitations in soil properties and meteorologic forcing data, have limited
predictive skill at estimating soil moisture patterns at less than about 10km.

Validation of Derived Products

It is anticipated that higher-order products will be derived from any L-band radar mission for
Australia. While these may include vegetation and landuse mapping, flood inundation, fire
front monitoring and so forth, the most relevant here is root-zone soil moisture retrieval.

Satellite remote sensing of soil moisture only provides direct information on the top
approximately 5cm deep layer of soil. However, numerous studies (eg. Walker 1999; Walker
et al., 2004) have demonstrated the ability to derive soil moisture information over the root-
zone through the process of “assimilating” the surface observations into a soil moisture
prediction model.
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Both the SMOS and SMAP missions plan to have what is called a Level 4 product; an estimate
of the root-zone soil moisture content from assimilating the satellite surface soil moisture
observations into a land surface model.

Soil moisture prediction models suffer from i) poor inputs of atmospheric forcing data such
as precipitation, ii) inaccurate estimates of soil hydraulic parameters, and iii) miss-
representation of the physical processes that redistribute the water within the soil column.
However, if the correlation between the errors in the models estimate of soil moisture at
the surface and at deeper depths is known, then the corrections at the surface, through
comparison with satellite observations of surface soil moisture, can be propagated
throughout the soil column (Walker et al., 2001).

The problem is that models are often a poor representation of reality, meaning that there
can be large biases between model predictions at different soil depths, and between model
predictions and observations (De Lannoy et al., 2006). Consequently, efforts are underway
to both improve the physical realism of these models, and to better understand how to
account for bias in data assimilation.

Both the CosmOz and OzNet stations provide soil moisture information at deeper depths
(30cm for CosmOz and 90cm for OzNet), which should be used for validation of any derived
root-zone soil moisture product. Data from OzNet sites are already being used for pre-
launch SMAP validation studies utilising surface soil moisture data from SMOS.

11. CONCLUDING SUMMARY

11.1.1.

11.1.2.

11.1.3.

11.1.4.

11.1.5.

V01_00

This report has considered past, present and proposed methods of soil moisture retrieval
using SAR data and has presented recommendations for satellite SAR systems that could be
used for soil moisture recovery over bare and vegetated surfaces and under forests.

The properties of SAR systems that could satisfy the soil moisture retrieval processes have
been considered and, in the absence of specific system design constraints, considered the
probable occupation volumes of these SAR systems in the vast SAR design space.

Without specific guidance on choices of antenna design, RF technologies and preferred
resolution of the final soil moisture product, it is not possible to generate a SAR system
design, which in any case cannot be derived without sophisticated modelling. If the process
begun here is to move forward, then the next stage will involve some specific decisions
being made as to what areas are of primary interest, and what final products are required,
so that full system designs can be commissioned.

Being the stated position of the authors that they have not been tasked to comment on any
existing SAR system designs, it is not assumed that any suitable designs already exist,
particularly at S-band or P-band.

The requirement for 2-3 day repeat observation does tend to imply a constellation of
satellites rather than a single satellite. However this conclusion must be justified through
detailed modelling before it should be accepted, and in particular the number of required
satellites in the constellation should be established.
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The use of multiple (not necessarily identical) satellites should not complicate the
radiometric and polarimetric calibration procedures since these are well established. Nor is
there necessarily a requirement to calibrate one satellite against another, since each may be
calibrated absolutely through the use of active and passive targets, although the existence of
multiple observations of stable targets will afford the opportunity of establishing the
stability of each sensor. However, the use of a time-series soil moisture retrieval algorithm
will require a tight tolerance on relative calibration performance between constellation
sensors.

In addition to the need to commission a complete SAR system design based on the chosen
soil moisture product parameters, there is much work to be done to establish the algorithm
for retrieval of soil moisture below heavily vegetated and forested surfaces.
Recommendations for future work that would serve to establish algorithms for these
problematic terrain types have been given.

Finally the need for strategies for calibration, validation and monitoring, both of the SAR
sensor radiometry and polarimetry as well as of the retrieval algorithms, has been
highlighted. These will require substantial effort, careful planning and extended execution.
The outline for such a program has been provided.
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APPENDIX A. SOME SIGNIFICANT MODEL PARAMETERS

Model and

author(s)

Table A.1. Model parameters. Theoretical backscatter models.

Formulation

Model parameters

Approximate
version of IEM

(Altese et al.
1996)

a°

g

2 W (=2k,,.0)

n!

2 e
= % exp(—2klo 1)20’ I ‘I;q |
=

kL |F,, (ko 0+ F,y (k0]
2

Iy =(2k,)" £y exp(-07k5,) +

2R

v

cos 17

~2R,

cos

fm: =

2sin’ 9(1+R,)*
cost

=
sr

22 2
e, —sin” ¥ —g, cos”

F,(-k, 0)+F,(k,.0)=

2 2
€, cos” O

—2sin” d(1+R,)*
cost?

i}

ue, —sin® % —p, cos’ B

Fi (k. 0) + Fyy (k,.0) =

ulcos’

cos¥—,/e, —sin” &
R, = d
cos ¥+ /g, —sin” O

. 2
g, costh—,Je, —sin~

R, = :
g, costh+,/E —smn” ¢

.
"l

W7 ) = [ p" €. 6) expliug —ivg)dgds

foq Kirchhoff coefficient
Foq complementary field coefficient

R, and R;, vertical and horizontal Fresnel reflection
coefficients
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Ro Fresnel reflection coefficient at nadir

g, relative dielectric constant

ko free space wave number

k.0 Z component of free space wave number
kyo X component of free space wave number
o RMS surface height (cm)

| correlation length (cm)

W, relative magnetic permeability

W" roughness spectrum of surface related to nth
power of 2 parameter surface correlation function

p(E',,C_,) by the Fourier transformation, and is
usually simplified to a single parameter isotropic
case

Table A.2 Model parameters. Empirical backscatter models.

Model and author(s) Formulation Model parameters
Oh’s model 2 3 5 1
cos T
(Oh et al. 1992) ol = = [Fv +TI, | ,\5 =1— 28 Jh exp(—k,0)
VP T
a 3
o =gypeos’ O, +T,] | g =071 — expl-0.65(k,0)")]
o _ ] |
O =40, q=023,T, [l —exp(~k,0)]
— |3
r cos—J€, —sin” &
h =
cos}+./g, —sin’ 1'3“
T
g, costh—[g, — sin’ 1'3“
I' =
£, cos¥+./e, —sin’ 1'3“
1-ye |
—AlE
Lk Y
1+./€,
¥ incidence angle (deg.)
T'v Vertical Fresnel reflectivity
I"h Horizontal Fresnel reflectivity
T'0 Fresnel reflectivity at nadir
Er Dielectric constant relative to free space
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Table A.3 Model parameters. Semi-empirical backscatter models.

Model parameters

Shi et
(1997)

al.

S = (k0 fW(-2k,)
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Where:

W roughness spectrum related to one-parameter

surface correlation function pE)
Jo() Bessel function to zeroth order
ko free space wave number

ke X component of free space wave number

1 incidence angle (deg.)
apq and by, empirically derived coefficients
g approximation of parameter | in IEM

R, and Ry, vertical and horizontal Fresnel reflection
coefficients

€, relative dielectric constant

- By using 2 polarisation measurements and
rearranging the above equations, the roughness
parameter Sg was eliminated to obtain:
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- This equation is used to solve for the dielectric
constant of the near-surface soil layer from vv and
hh polarisation observations. The base equation is
then used to solve for the surface roughness
parameter.

Where:

a, () =exp

—12.37+37.206sm ¢ —
41.187sin” ¥ +18.89<in’* &

b, (¥)=0.649 + 0.659 cos ¥ — 0.306 cos” ¥}
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APPENDIX B. ACRONYMS
AASR  Azimuth ASR MPDI  Microwave Polarisation Difference Index
AIRSAR Airborne Synthetic Aperture Radar NAFE National Airborne Field Experiment
ALOS Advanced Land Observation Satellite NASA National Aeronautics and Space
Administration
AMSR-E  Advanced Microwave Scanning Radiometer - NDVI Normalized Difference Vegetation Index
Earth Observing System
ANN Artificial Neural Network NDWI Normalized Difference Water Index
ARD Annotated Raw Data NESZ Noise Equivalent Sigma Zero
ASAR Advanced Synthetic Aperture Radar NMM3D Numerical Maxwell Model in 3 Dimensions
ASAR Advanced Synthetic Aperture Radar OSSE  Observing System Simulation Experiment
ASCAT Advanced SCATterometer OzNet Australian Hydrological Monitoring Network
ASI  Agenzia Spaziale Italiana PALS Passive/Active L-band Sensor
ASR  Ambiguity to Signal Ratio PALSAR Phased Array L-band SAR
ASR  Ambiguity to Signal Ratio PBTG Physical Based Two Grid
AWRA Australian Water Resources Assessment PCA  Principal Components Analysis
system
CONAE Comision Nacional de Actividades Espaciales PLIS Polarimetric L-band Imaging Synthetic
aperture radar
COSMOS Campaign for validating the Operation of PLMR  Polarimetric L-band Multibeam Radiometer
SMOS
CosmOz Australian National Cosmic Ray Soil Moisture PolInSAR  Polarimetric Interferometric SAR
Monitoring Facility
CP  Compact Polarimetry PoISAR Polarimetric SAR
DBF Digital Beam Forming POM Physical Optics Method
DEM Digital Elevation Model PR Polarisation Ratio
DESDynl Deformation, Ecosystem Structure, and PRF Pulse Repetition Frequency
Dynamics of Ice
DiSPATCh Disaggregation based on Physical And PRI Pulse Repetition Interval
Theoretical scale Change
EASE Equal-Area Scalable Earth grid RFI Radio Frequency Interference
EKF Extended Kalman Filter RMS Root Mean Square
108
Vv01_00 Annex 12. Basis Of An Australian Radar Soil 30th June 2013

Moisture Algorithm Theoretical Baseline Document



Z MONASH University & 109
' Basis of an ATBD for a radar soil moisture mission
ENVISAT ENVironmental SATellite RMSE Root Mean Square Error
ERS European Remote Sensing SA  Strategic Applications
ESA European Space Agency SAOCOM SAtélite Argentino de Observacion COn
Microondas
EUMETSAT European Organisation for the Exploitation SAR Synthetic Aperture Radar
of Meteorological Satellites
FP  Full Polarimetry SCORE Scan On Receive algorithm
GCOM Global Change Observation Mission SLC Single Look Complex
GMES Global Monitoring for Environment and SM  Soil Moisture
Security
GPS Global Positioning System SMAP Soil Moisture Active Passive
GSFC Goddard Space Flight Center SMAPEx Soil Moisture Active Passive Experiment
IEM Integral Equation Method SMART  Smart Multi Aperture Radar Techniques
INA Instituto Nacional del Agua SMC Soil Moisture Content
InSAR Interferometric SAR SMCG Sparse Matrix Canonical Grid
INTA Instituto Nacional de Tecnologia SMOS Soil Moisture and Ocean Salinity
Agropecuaria
IWS Interferometric Wide Swath SMOSAR Soil MOisture retrieval from multi-temporal
SAR data
JAXA Japan Aerospace Exploration Agency SMP  Soil Moisture Processor
JPL Jet Propulsion Laboratory SNR  Signal to Noise Ratio
KA  Kirchhoff Approach SPM  Small Perturbation Model
LIA  Local Incidence Angle TDR Time Domain Reflectometry
L-MEB L-band microwave emission of the biosphere TEC Total Electron Content
model
LOS Line Of Sight TMI  TRMM Microwave Imager
LUT Look-Up Table TRMM  Tropical Rainfall Measuring Mission
MAP  Bayesian Maximum Posterior Probability VWC Vegetation Water Content
MODIS Moderate Resolution Imaging WCM Water Cloud Model
Spectroradiometer
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